Investigation of the Weldability of the Self-Reinforced Polypropylene Composites

2010 ◽  
Vol 659 ◽  
pp. 25-30 ◽  
Author(s):  
Zoltán Kiss ◽  
Ákos Kmetty ◽  
Tamás Bárány

In the present work the weldability of self-reinforced composite was investigated. As reinforcement a fabric, woven from highly stretched split PP yarns, whereas as matrix materials of two kinds of random polypropylene copolymer (with ethylene) were used. The composite sheets were produced by film-stacking method and compression molded with different thickness (1 mm, 2 mm) with different contents at different processing temperatures keeping the holding time and pressure constant. The SRPPC sheets were welded by ultrasonic welding machine with different welding parameters. The welds were qualified by mechanical and microscopic tests. The results showed that the thermoplastic reinforcement has not got melted; therefore the reinforcement was kept the strength-increasing effect.

2021 ◽  
Author(s):  
Guangte Xiang ◽  
Yurui Hu ◽  
Sheng Zeng ◽  
Jianfeng Shi ◽  
Jinyang Zheng

Abstract Electrofusion (EF) welding is one of the most common connection methods for polyethylene (PE) pipe, as well as thermoplastic pipe and reinforced composite pipe. Conventional EF welding generally adopts constant-voltage welding mode. The welding machine outputs a constant welding voltage to heat the resistance wire within specific welding time. In our previous study, intelligent welding machine was designed to ensure the quality of the EF joint, based on the study of the temperature field in EF joint. In this paper, three experiments were used to show the difference between the intelligent welding machine and traditional welding machine. The intelligent welding machine can actively adjust the welding parameters to ensure the quality of EF joint even it was given the wrong welding voltage and welding time. Compared with the traditional welding machine, the intelligent welding machine can automatically control the maximum temperature and the depth of melting region in EF joint during the welding process, and this method applies for EF joints with various diameters or design welding parameters.


2014 ◽  
Vol 657 ◽  
pp. 306-310
Author(s):  
Lăcrămioara Apetrei ◽  
Vasile Rață ◽  
Ruxandra Rață ◽  
Elena Raluca Bulai

Research evolution timely tendencies, in the nonconventional technologies field, are: manufacture conditions optimization and complex equipments design. The increasing of ultrasonic machining use, in various technologies is due to the expanding need of a wide range materials and high quality manufacture standards in many activity fields. This paper present a experimental study made in order to analyze the welded zone material structure and welding quality. The effects of aluminium ultrasonic welding parameters such as relative energy, machining time, amplitude and working force were compared through traction tests values and microstructural analysis. Microhardness tests were, also, made in five different points, two in the base material and three in the welded zone, on each welded aluminium sample. The aluminum welding experiments were made at the National Research and Development Institute for Welding and Material Testing (ISIM) Timişoara. The ultrasonic welding temperature is lower than the aluminium melting temperature, that's so our experiments reveal that the aluminium ultrasonic welding process doesn't determine the appearance of moulding structure. In the joint we have only crystalline grains deformation, phase transformation and aluminium diffusion.


2013 ◽  
Vol 64 (1) ◽  
Author(s):  
Rashiqah Rashli ◽  
Elmi Abu Bakar ◽  
Shahrul Kamaruddin

Ultrasonic welding had been widely used in various manufacturing industries such as aviation, medical, electronic device and many more. It offers a continued safe operation, faster and also low cost as it able to join weld part less than one second and also simple to maintain the tooling devices. Though ultrasonic welding brings a lot of advantages in assembly especially in thermoplastic material of manufacturing product, it also has a dominant problem to be deal with. The problem in ultrasonic welding is poor weld quality due to improper selection of ultrasonic welding parameters especially in near field configuration. Thus, an optimal combination of parameters is crucial in order to produce good quality weld assembly for this configuration. In this paper, ultrasonic welding process, ultrasonic weld joint defects and determination of optimal parameters for thermoplastic material had been discussed thoroughly. 


2016 ◽  
Vol 694 ◽  
pp. 8-12 ◽  
Author(s):  
M.Y. Yuhazri ◽  
G.C.H. Nilson ◽  
Haeryip Sihombing ◽  
Mohd Edeerozey Abd Manaf

The aim of this study is to evaluate the mechanical properties and study the failure of laminated glass reinforced composite coated with gelcoat of different thickness. Firstly, the gelcoat was applied to the mould using brush and subsequently, glass fiber reinforced composite laminates were fabricated on it using vacuum bagging technique. The mechanical properties of the composites various were tested by using tensile and three-point flexural tests. The fracture behaviour of different gelcoat thickness was observed using scanning electron microscope (SEM) to determine the failure behaviour that occurred. The flexural test was performed in two ways, i.e., gelcoat layer facing top and facing down. For both flexural tests, composite coated with 0.30 mm thick of gelcoat shows the highest mechanical strength. Tensile test is useful to investigate the interfacial bonding in between gelcoat and laminate composite. The composite coated with 0.40 mm of gelcoat showed the highest tensile strength, an increase of 38 % compared to the uncoated composite. It was observed that an increase in gelcoat thickness increased the brittleness of the laminated composite. From the failure analysis, failures were caused by the delamination of matrix between the plies, while the gelcoat was still strongly bonded with composite laminate.


Author(s):  
Hui Shi ◽  
Jianping Wang ◽  
Xiaona Chen ◽  
Shunhua Luo ◽  
Lingxi Zhang

Purpose An improved waterproof seam production technology (ultrasonic welding-thermo adhesive tape sealing (USW-TATS)) was developed in this study. The technology will improve the waterproof performance of seam which has problem resulted from needle holes and thread like seam leaking and excess shrinkage. Design/methodology/approach Threadless seams were produced by ultrasonic welding (USW) with coated and lamination fabric to replace the traditional sewing process in Sewing-thermo adhesive tape sealing (S-TATS). The process efficiency was evaluated by Methods-Time Measurement (MTM). Seam performance including hydrostatic pressure, shrinkage and tear force was compared among three technologies (USW, USW-TATS and S-TATS). The effect of ultrasonic welding parameters (amplitude, roller pressure and roller speed) on the USW-TATS seam performance was investigated.SEM analysis was carried out to examine the condition and morphology of the joints cross section. Findings It was found that waterproof performance and dimensional stability of USW-TATS seam were superior to that of S-TATS seam. Tear force and hydrostatic pressure increased firstly and then decreased with the increasing of USW parameters in UAW-TATS process. Binary regression relationships were found between the USW parameters and tear force or hydrostatic pressure. Shrinkage decreased with the increasing of roller pressure and speed. Practical implications Research results can be applied to predict seam performance of waterproof clothing, reduce equipment parameters setting time and enhance product quality in industry. Originality/value A threadless production technology (USW-TATS) was proposed to improve waterproof performance and dimensional stability of outdoor clothing seams.


POROS ◽  
2018 ◽  
Vol 15 (1) ◽  
pp. 44
Author(s):  
Yusril Irwan ◽  
Gatot Pamungkas

Abstract: Main frame welding at the front automatic motorcycle of PT. XXX is the stage of (trial production). The welding machine is Panasonic TM-1400G3 MIG automatic welding machine with 75% Argon and 25% Ar-CO2. Main frame material low carbon steel STAM 390G. To obtain the welding results in accordance with the standards specified by the client, weld testing parameters are varied for each test, which are ampere and voltage. The constant welding parameters in this research are travel speed, gas flow, welding direction, tip distance to workpiece, torch angle and welding angle. All test results are inspected visually and dimensionally, if passed, it will be followed by inspection of macro structure analysis. The results measured on the macro structure analysis ar : penetration (a1), penetration (a2), bead welding, throuth, leg length and crown with standard measurement values determined by the client PT.XXX. The welding results (OK) in the macro structure analysis measurement are defined as reference parameters for mass production. The best parameters for main frame welding are vertical position down (3G) with 170 Ampere current and 20 Volt voltages, and for horizontal position (2G) with 180 ampere current parameters and 17 Volt voltages. 


Sign in / Sign up

Export Citation Format

Share Document