Quality Investigation of 3C-SiC Crystals Grown by CF-PVT Technique

2011 ◽  
Vol 679-680 ◽  
pp. 20-23
Author(s):  
Irina G. Galben-Sandulache ◽  
Maya Marinova ◽  
Alkyoni Mantzari ◽  
Guoli L. Sun ◽  
Ariadne Andreadou ◽  
...  

This work presents the crystalline quality investigation of 3C-SiC unseeded crystals grown from vapor phase. Samples were polished after different crystallographic planes from crystals grown with or without nitrogen flow. The structural and optical investigation showed that the central part of the samples exhibited a very good crystalline quality. The best samples proved to be the {100} growth sectors where the only defects found were stacking faults with a defect density under 103 cm-1. At the edges, i.e. between two adjacent growth sectors, structural investigation by transmission electron microscopy revealed stacking faults and hexagonal polytype inclusions. The nitrogen doping was found not to have an influence on the crystalline quality.

2012 ◽  
Vol 717-720 ◽  
pp. 181-184
Author(s):  
Hideki Shimizu ◽  
Takashi Watanabe

To demonstrate the formation of 3C-SiC film on Si (111) at low substrate temperature, the effects of C3H8 on the crystalline quality of the 3C-SiC films on Si (111) have been investigated by changing the flow rate of C3H8 at the substrate temperature of 950 °C. The crystalline quality has been investigated by transmission electron microscope and X-ray diffraction. 3C-SiC is epitaxially grown on Si(111) and the 3C-SiC films are in either near single crystalline or highly oriented form with stacking faults and twin. It is expected that the film with good crystalline quality may grow at around 2.5 in the ratio of the flow rate of C3H8 to SiH4 and any microstructures of 3C-SiC films on Si (111) can be controlled by accurately controlling the ratio of C/Si.


2010 ◽  
Vol 645-648 ◽  
pp. 383-386 ◽  
Author(s):  
Maya Marinova ◽  
Georgios Zoulis ◽  
Teddy Robert ◽  
Frédéric Mercier ◽  
Alkyoni Mantzari ◽  
...  

In the present work the defects appearing in layers grown by liquid phase epitaxy on different substrates are compared. The used seeds were (i) 3C-SiC with (111) orientation, grown heteroepitaxially on (0001) 4H-SiC or 6H-SiC substrates by continuous feed physical vapour transport process and the vapour-liquid-solid mechanism, respectively, and (ii) 3C-SiC wafer with (100) orientation from HOYA. The structural and optical investigation showed that (i) on the (111) substrates, due to the appearance of silicon and 6H-SiC inclusions, a layer which consisted of a sequence of long period polytypes was formed. The dominant polytype formed was 21R-SiC, which after successive transformation to 39R- and 57R- SiC led to the formation of 6H-SiC on the top of the layer. (ii) On the (100) substrates, a 3C-SiC layer with comparatively uniform defect density was formed. The main defects were stacking faults and their density was reducing during the process.


2005 ◽  
Vol 483-485 ◽  
pp. 319-322 ◽  
Author(s):  
Efstathios K. Polychroniadis ◽  
Alkyoni Mantzari ◽  
A. Freudenberg ◽  
Jürgen Wollweber ◽  
R. Nitschke ◽  
...  

The aim of the present work is to grow 3C-SiC on (0001) 6H-SiC seeds using the Physical Vapour Transport (PVT) method and to study the electrical and structural properties of the grown material. Photoluminescence (PL)-mappings reveal that the overgrown layer consists predominantly of the 3C-SiC polytype and capacitance-voltage (C-V) measurements result in a net nitrogen donor concentration of 1x1016cm-3. Transmission Electron Microscopy (TEM) observations also confirm that the overgrown layer is of the 3C-SiC polytype having the cubic [111] crystallographic direction parallel to the c-axis of the 6H-SiC substrate. In some cases, twin crystals of 3C-SiC are formed immediately after the interface and, in a few cases, small 6H-SiC inclusions are observed in the cubic film having the same orientation as the substrate. The film near the substrate/overgrown interface shows a high density of defects such as dislocations and stacking faults (SF’s), which propagate into the overgrown layer. Finally although there is a rapid decrease of the defect density within the first 60 µm from the interface, the SF density remains almost constant within the last 100 µm below the surface.


1988 ◽  
Vol 144 ◽  
Author(s):  
Tanemasa Asano ◽  
Hiroshi Ishiwara ◽  
Seijiro Furukawa

ABSTRACTHeteroepitaxial growth of CaF2 films on (511)Si and GaAs films on CaF2/Si(511) structures is investigated. CaF2 films and GaAs films are grown by vacuum evaporation and molecular beam epitaxy, respectively. Ion channeling measurements and replica transmission electron microscopy show that CaF2 films having good crystalline quality and surface steps can be formed by annealing at 900°C for 30 sec after the growth at 550° C. GaAs films having smooth surfaces and good crystalline quality can be grown on the annealed CaF2/Si(511) structures.


1991 ◽  
Vol 235 ◽  
Author(s):  
C. Lee ◽  
K. S. Jones

ABSTRACTThe solid phase epitaxial regrowth (SPER) process of implantation amorphized Si0.7Ge0.3 layers (850± Å thick) grown on (100) Si has been studied by cross-sectional transmission electron microscopy. For amorphous layers produced by 40 Ar+ implantation highly defective three dimensional regrowth was observed in both Si0.7Ge0.3 and Si. Stacking faults were the principle defect formed of both materials during regrowth. SPER after amorphization via 73 Ge+ implantation was also investigated. It was found that the SPER velocity of the 73 Ge+ implanted Si0.7 Ge0.7 Ge0.3 was about twice the velocity of the 40 Ar+ implanted samples; for 73 Ge+ implanted Si it was about three times that of the 40Ar+ implanted samples. The activation energy for SPER in 40Ar+ and in 73 Ge+ implanted Si0.7 Geo0.3 was about 1.6 and 2.6 eV, respectively. The defect density was significantly reduced in 73 Ge+ amorphized Si but not in the 73 Ge+ amorphized Si0.7 Ge0.3. It is proposed that limited Ar solubility inhibits high quality regrowth in both SiGe and Si. Upon 73 Ge+ amorphization and solid phase epitaxy the interfacial strain between the SiGe and Si cannot be accommodated. Thus the epitaxial process is poor in these SiGe strained layers regardless of the amorphizing species.


Author(s):  
Raja Subramanian ◽  
Kenneth S. Vecchio

The structure of stacking faults and partial dislocations in iron pyrite (FeS2) have been studied using transmission electron microscopy. Pyrite has the NaCl structure in which the sodium ions are replaced by iron and chlorine ions by covalently-bonded pairs of sulfur ions. These sulfur pairs are oriented along the <111> direction. This covalent bond between sulfur atoms is the strongest bond in pyrite with Pa3 space group symmetry. These sulfur pairs are believed to move as a whole during dislocation glide. The lattice structure across these stacking faults is of interest as the presence of these stacking faults has been preliminarily linked to a higher sulfur reactivity in pyrite. Conventional TEM contrast analysis and high resolution lattice imaging of the faulted area in the TEM specimen has been carried out.


Author(s):  
D. Gerthsen

The prospect of technical applications has induced a lot of interest in the atomic structure of the GaAs on Si(100) interface and the defects in its vicinity which are often studied by high resolution transmission electron microscopy. The interface structure is determined by the 4.1% lattice constant mismatch between GaAs and Si, the large difference between the thermal expansion coefficients and the polar/nonpolar nature of the GaAs on Si interface. The lattice constant mismatch is compensated by misfit dislocations which are characterized by a/2<110> Burgers vectors b which are oriented parallel or inclined on {111} planes with respect to the interface. Stacking faults are also frequently observed. They are terminated by partial dislocations with b = a/6<112> on {111} planes. In this report, the atomic structure of stair rod misfit dislocations is analysed which are located at the intersection line of two stacking faults at the interface.A very thin, discontinous film of GaAs has been grown by MBE on a Si(100) substrate. Fig.1.a. shows an interface section of a 27 nm wide GaAs island along [110] containing a stair rod dislocation. The image has been taken with a JEOL 2000EX with a spherical aberration constant Cs = 1 mm, a spread of focus Δz = 10 nm and an angle of beam convergence ϑ of 2 mrad.


Author(s):  
Z. L. Wang ◽  
R. Kontra ◽  
A. Goyal ◽  
D. M. Kroeger ◽  
L.F. Allard

Previous studies of Y2BaCuO5/YBa2Cu3O7-δ(Y211/Y123) interfaces in melt-processed and quench-melt-growth processed YBa2Cu3O7-δ using high resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray spectroscopy (EDS) have revealed a high local density of stacking faults in Y123, near the Y211/Y123 interfaces. Calculations made using simple energy considerations suggested that these stacking faults may act as effective flux-pinners and may explain the observations of increased Jc with increasing volume fraction of Y211. The present paper is intended to determine the atomic structures of the observed defects. HRTEM imaging was performed using a Philips CM30 (300 kV) TEM with a point-to-point image resolution of 2.3 Å. Nano-probe EDS analysis was performed using a Philips EM400 TEM/STEM (100 kV) equipped with a field emission gun (FEG), which generated an electron probe of less than 20 Å in diameter.Stacking faults produced by excess single Cu-O layers: Figure 1 shows a HRTEM image of a Y123 film viewed along [100] (or [010]).


Author(s):  
M. Gajdardziska-Josifovska ◽  
B. G. Frost ◽  
E. Völkl ◽  
L. F. Allard

Polar surfaces are those crystallographic faces of ionically bonded solids which, when bulk terminated, have excess surface charge and a non-zero dipole moment perpendicular to the surface. In the case of crystals with a rock salt structure, {111} faces are the exemplary polar surfaces. It is commonly believed that such polar surfaces facet into neutral crystallographic planes to minimize their surface energy. This assumption is based on the seminal work of Henrich which has shown faceting of the MgO(111) surface into {100} planes giving rise to three sided pyramids that have been observed by scanning electron microscopy. These surfaces had been prepared by mechanical polishing and phosphoric acid etching, followed by Ar+ sputtering and 1400 K annealing in ultra-high vacuum (UHV). More recent reflection electron microscopy studies of MgO(111) surfaces, annealed in the presence of oxygen at higher temperatures, have revealed relatively flat surfaces stabilized by an oxygen rich reconstruction. In this work we employ a combination of optical microscopy, transmission electron microscopy, and electron holography to further study the issue of surface faceting.


Author(s):  
Alfred Baltz

As part of a program to develop iron particles for next generation recording disk medium, their structural properties were investigated using transmission electron microscopy and electron diffraction. Iron particles are a more desirable recording medium than iron oxide, the most widely used material in disk manufacturing, because they offer a higher magnetic output and a higher coercive force. The particles were prepared by a method described elsewhere. Because of their strong magnetic interaction, a method had to be developed to separate the particles on the electron microscope grids.


Sign in / Sign up

Export Citation Format

Share Document