Comparison between the Piezoresistive Properties of a-SiC Films Obtained by PECVD and Magnetron Sputtering

2011 ◽  
Vol 679-680 ◽  
pp. 217-220 ◽  
Author(s):  
Mariana A. Fraga

This work compares the piezoresistive properties of SiC thin films produced by two techniques enhanced by plasma, PECVD (plasma enhanced chemical vapor deposition) and RF magnetron sputtering. In order to study these properties, strain gauges based on SiC films produced were fabricated using photolithography techniques in conjunction with lift-off processes. The beam-bending method was used to characterize the SiC strain gauges fabricated.

Langmuir ◽  
1996 ◽  
Vol 12 (22) ◽  
pp. 5350-5355 ◽  
Author(s):  
Noo Li Jeon ◽  
Paul G. Clem ◽  
David A. Payne ◽  
Ralph G. Nuzzo

2008 ◽  
Vol 600-603 ◽  
pp. 875-878
Author(s):  
Gwiy Sang Chung ◽  
Chang Min Ohn

This paper describes magnetron reactive ion etching (RIE) characteristics of polycrystalline (poly) 3C-SiC thin films grown on thermally oxidized Si substrates by atmospheric pressure chemical vapor deposition (APCVD). The best vertical structures were obtained by the addition of 40 % O2, 16 % Ar, and 44 % CHF3 reactive gas at 40 mTorr of chamber pressure. Stable etching was achieved at 70 W and the poly 3C-SiC was undamaged. These results show that in a magnetron RIE system, it is possible to etch SiC with lower power than that of the commercial RIE system. Therefore, poly 3C-SiC etched by magnetron RIE has the potential to be applied to micro/nano electro mechanical systems (M/NEMS).


1994 ◽  
Vol 354 ◽  
Author(s):  
Dan Schwarcz ◽  
Ritva A.M. Keski-Kuha

AbstractSilicon Carbide (SiC) formed by chemical vapor deposition (CVD) has the highest reflectivity in the extreme ultraviolet (EUV) of any currently used optical material. The high temperature required for the CVD process, however, limits its suitability for coating optical components. To address this problem thin films have been sputtered onto optical surfaces from CVD βSiC targets. These films, while having reflectivity lower than that of CVD SiC, are nonetheless the best coatings available for reflectance in the spectral region below 1000À. While the initial properties are good, the EUV reflectivity degrades with time after deposition. A relative decrease of about 25% is evident in the reflectivity at 920Â after 2.5 years, and about 85% of this change occurs in the first three months. In fact, a decrease is observed in the minutes following deposition. In this study the degradation is characterized and a mechanism is proposed. Efforts underway to reduce or eliminate the degradation are discussed.


2003 ◽  
Vol 42 (Part 1, No. 11) ◽  
pp. 7025-7028 ◽  
Author(s):  
Masayuki Kamei ◽  
Takahira Miyagi ◽  
Tomoyuki Ogawa ◽  
Takefumi Mitsuhashi ◽  
Atsushi Yamazaki ◽  
...  

2018 ◽  
Vol 10 (3) ◽  
pp. 03001-1-03001-6 ◽  
Author(s):  
Bharat Gabhale ◽  
◽  
Ashok Jadhawar ◽  
Ajinkya Bhorde ◽  
Shruthi Nair ◽  
...  

2009 ◽  
Vol 23 (09) ◽  
pp. 2159-2165 ◽  
Author(s):  
SUDIP ADHIKARI ◽  
MASAYOSHI UMENO

Nitrogen incorporated hydrogenated amorphous carbon (a-C:N:H) thin films have been deposited by microwave surface-wave plasma chemical vapor deposition on silicon and quartz substrates, using helium, methane and nitrogen ( N 2) as plasma source. The deposited a-C:N:H films were characterized by their optical, structural and electrical properties through UV/VIS/NIR spectroscopy, Raman spectroscopy, atomic force microscope and current-voltage characteristics. The optical band gap decreased gently from 3.0 eV to 2.5 eV with increasing N 2 concentration in the films. The a-C:N:H film shows significantly higher electrical conductivity compared to that of N 2-free a-C:H film.


Sign in / Sign up

Export Citation Format

Share Document