Shearing Patterns of AZ31 Mg Alloy Processed by Equal-Channel Angular Pressing via Various Route

2011 ◽  
Vol 682 ◽  
pp. 33-39 ◽  
Author(s):  
Xiao Ming Feng ◽  
Tao Tao Ai

Equal-channel angular pressing (ECAP) is used to convert coarse grain into ultrafine grain (UFG). The characteristics of ECAP and the shearing patterns obtained when ECAP applied to metals are investigated. Then propose a series of procedures to verify the structure evolution of AZ31 Mg alloys after ECAP processing. The results indicate that parameters including route, die angular and pressing passes influence on the microstructure of the AZ31 Mg alloys. Route BC is the optimum processing route due to the largest slipping angular range.

2014 ◽  
Vol 592-594 ◽  
pp. 444-450 ◽  
Author(s):  
R. Venkatraman ◽  
S. Raghuraman ◽  
R. Balaji ◽  
Kumar K.S. Ajay ◽  
M. Viswanath

This paper revolves around the idea of finding the strength enhancement of pure ‘Al’ compacts processed through Equal-Channel Angular Pressing (ECAP) process which ultimately results in fine grain structure of the material processed. The material initially prepared through conventional powder metallurgical route is processed in an ECAP die with a channel angle of 1100. The tensile test and micro-structural evaluation is done following the ECAP process and it is found that there was a substantial enhancement in the tensile properties and Ultrafine Grain (UFG) structure is obtained due to the Severe Plastic Deformation (SPD) phenomenon taking place during the process. The pore closure behavior is also analyzed using the TEM micrographs after each pass in ECAP die and promising results are obtained when the material is processed through different routes. The dislocation cell structure is also found to get refined after each pass through the die. The pore closure behavior is also confirmed using the DEFORM 3D software when the aluminum is simulated under similar conditions.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 607
Author(s):  
A. I. Alateyah ◽  
Mohamed M. Z. Ahmed ◽  
Yasser Zedan ◽  
H. Abd El-Hafez ◽  
Majed O. Alawad ◽  
...  

The current study presents a detailed investigation for the equal channel angular pressing of pure copper through two regimes. The first was equal channel angular pressing (ECAP) processing at room temperature and the second was ECAP processing at 200 °C for up to 4-passes of route Bc. The grain structure and texture was investigated using electron back scattering diffraction (EBSD) across the whole sample cross-section and also the hardness and the tensile properties. The microstructure obtained after 1-pass at room temperature revealed finer equiaxed grains of about 3.89 µm down to submicrons with a high density of twin compared to the starting material. Additionally, a notable increase in the low angle grain boundaries (LAGBs) density was observed. This microstructure was found to be homogenous through the sample cross section. Further straining up to 2-passes showed a significant reduction of the average grain size to 2.97 µm with observable heterogeneous distribution of grains size. On the other hand, increasing the strain up to 4-passes enhanced the homogeneity of grain size distribution. The texture after 4-passes resembled the simple shear texture with about 7 times random. Conducting the ECAP processing at 200 °C resulted in a severely deformed microstructure with the highest fraction of submicron grains and high density of substructures was also observed. ECAP processing through 4-passes at room temperature experienced a significant increase in both hardness and tensile strength up to 180% and 124%, respectively.


2006 ◽  
Vol 114 ◽  
pp. 91-96 ◽  
Author(s):  
Maxim Yu. Murashkin ◽  
M.V. Markushev ◽  
Julia Ivanisenko ◽  
Ruslan Valiev

The effects of equal channel angular pressing (ECAP), further heat treatment and rolling on the structure and room temperature mechanical properties of the commercial aluminum alloys 6061 (Al-0.9Mg-0.7Si) and 1560 (Al-6.5Mg-0.6Mn) were investigated. It has been shown that the strength of the alloys after ECAP is higher than that achieved after conventional processing. Prior ECAP solution treatment and post-ECAP ageing can additionally increase the strength of the 6061 alloy. Under optimal ageing conditions a yield strength (YS) of 434 MPa and am ultimate tensile strength (UTS) of 470 MPa were obtained for the alloy. Additional cold rolling leads to a YS and UTS of 475 and 500 MPa with 8% elongation. It was found that the post-ECAP isothermal rolling of the 1560 alloy resulted in the formation of a nano-fibred structure and a tensile strength (YS = 540 MPa and UTS = 635 MPa) that has never previously been observed in commercial non-heat treatable alloys.


Metals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 738 ◽  
Author(s):  
Qiong Xu ◽  
Aibin Ma ◽  
Junjie Wang ◽  
Jiapeng Sun ◽  
Jinghua Jiang ◽  
...  

Relatively low compactness and unsatisfactory uniformity of reinforced particles severely restrict the performance and widespread industry applications of the powder metallurgy (PM) metal matrix composites (MMCs). Here, we developed a combined processing route of PM and equal channel angular pressing (ECAP) to enhance the mechanical properties and wear resistance of the SiCp/Al-Si composite. The results indicate that ECAP significantly refined the matrix grains, eliminated pores and promoted the uniformity of the reinforcement particles. After 8p-ECAP, the SiCp/Al-Si composite consisted of ultrafine Al matrix grains (600 nm) modified by uniformly-dispersed Si and SiCp particles, and the composite relative density approached 100%. The hardness and wear resistance of the 8p-ECAP SiCp/Al-Si composite were markedly improved compared to the PM composite. More ECAP passes continued a trend of improvement for the wear resistance and hardness. Moreover, while abrasion and delamination dominated the wear of PM composites, less severe adhesive wear and fatigue mechanisms played more important roles in the wear of PM-ECAP composites. This study demonstrates a new approach to designing wear-resistant Al-MMCs and is readily applicable to other Al-MMCs.


2004 ◽  
Vol 449-452 ◽  
pp. 645-648
Author(s):  
Si Young Chang ◽  
Sang Woong Lee ◽  
Jin Chun Kim ◽  
Young Seok Kim ◽  
Dong Hyuk Shin

The commercial AZ31 and AZ61 Mg alloys were subjected to equal channel angular pressing (ECAP) after hot rolling at 673 K. The hot-rolled AZ31 alloy could be ECA pressed at 493 K. The 4 ECA pressed AZ31 alloy revealed the microstructure of dynamically recrystallized grains with a grain size in range of 1 to 10μm. Despite the dynamic recrystallization during ECAP at higher temperatures ( > 1/2 Tm), the yield stress and tensile strength of AZ31 and AZ61 alloys drastically increased after 1 pressing. The yield stress gradually decreased with increasing the number of pressings, which contrasts with the behavior of the ECA pressed Al and Fe alloys, while the tensile strength increased slightly. In particular, the alloys showed nearly 3 times higher elongation than as-annealed one after 4 ECAPs, without sacrificing the tensile strength. These tensile deformation characteristics were explained based on the observation of the deformed microstructure in the vicinit of fracture surface.


2018 ◽  
Vol 2018 ◽  
pp. 1-15
Author(s):  
Muhammad Rifai ◽  
Motohiro Yuasa ◽  
Hiroyuki Miyamoto

The effect of the deformation structure and annealing temperature on the corrosion of ultrafine-grain (UFG) Fe-Cr alloys with 8 to 12% Cr prepared by equal channel angular pressing (ECAP) was investigated with particular emphasis on the stability of the passivation layer. Fe-Cr alloys were processed by ECAP using up to eight passes at 423 K by the Bc route, followed by annealing at temperatures of 473 to 1173 K for 1 h. Passivity appeared in all alloys as a result of ECAP, and the stability of the passivation layer was evaluated by anodic polarization measurements in a 1000 mol·m−3 NaCl solution. The stability of the passivation layer increased as the degree of deformation became more extensive with successive ECAP passes, and distinct escalation occurred with the formation of a UFG microstructure. In the early stages of annealing at moderate temperatures, the stability of the passivation layer deteriorated, although no visible grain growth occurred, and this effect increased monotonically with increasing annealing temperature. The high degree of stability of the passivation layer on UFG alloys following ECAP can be attributed to the large number of high-angle nonequilibrium grain boundaries, which may lead to Cr enrichment of the surface region. The deterioration of the passivation layer in the early stages of annealing may be attributed to a change in the grain boundaries to an equilibrium state. The present results show that the superiority of as-ECAPed materials of the Fe-Cr alloy to recovered ones by heat treatment can be achieved with 8–10% Cr as observed in 20% Cr.


Sign in / Sign up

Export Citation Format

Share Document