Effect of Fe on Phase Transformation of Low Temperature Cu-Al-Mn Memory Alloy

2011 ◽  
Vol 687 ◽  
pp. 474-479
Author(s):  
Kun Peng Zhu ◽  
Ning Hu ◽  
Fu Shun Liu

The influence of Fe addition on the phase transformation and the microstructure of Cu67Al27-XMn6FeXshape memory alloys are investigated by means of electrical resistivity, X-ray diffraction, scanning electron microscopy and microhardness test. It was shown that the Ms (Martensitic start transformation) temperature of the 850°C heat-treated alloy exhibit a sharp increase as Fe content increases, by comparison with the alloy without heat-treatment. For example, after 850°C heat-treatment, the Ms temperature of the alloy increases from 52K to 135K when Fe is added from 0 at.% to 1.5 at.%. The microstructure of as-homogenized Cu67Al27-XMn6FeXalloys consists of Cu3Al matrix, γ2(Cu9Al4) and α (Cu) phases. Fe element was distributed in precipitates and matrix.

2005 ◽  
Vol 288-289 ◽  
pp. 215-218 ◽  
Author(s):  
Qi Feng Yu ◽  
Bang Cheng Yang ◽  
Yao Wu ◽  
Xing Dong Zhang

In this study, alkali-heat treatment in NaOH solution and heat treatment, which could form amorphous sodium titanate on nanophase titania ceramics surface by conditioning the process, was employed to modify the structure and bioactivity of biomedical titania ceramics. After the nanophase titania ceramics was subjected to alkali-heat treatment, thin film X-ray diffraction and scanning electron microscopy results showed the titania ceramics surfaces were covered by porous sodium titanate. In fast calacification solution (FCS), the alkali-heat treated titania ceramics could induce bonelike apatite formation on its surface. Our results showed that induction of apatite-forming ability on titania ceramics could be attained by alkali-heat treatment. So it was an effective way to prepare bioactive titania ceramics by combining sintering and alkali-heat treatment.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
María Laura Vera ◽  
Mario Roberto Rosenberger ◽  
Carlos Enrique Schvezov ◽  
Alicia Esther Ares

The bio- and hemocompatibility of titanium alloys are due to the formation of a TiO2layer. This natural oxide may have fissures which are detrimental to its properties. Anodic oxidation is used to obtain thicker films. By means of this technique, at low voltages oxidation, amorphous and low roughness coatings are obtained, while, above a certain voltage, crystalline and porous coatings are obtained. According to the literature, the crystalline phases of TiO2, anatase, and rutile would present greater biocompatibility than the amorphous phase. On the other hand, for hemocompatible applications, smooth and homogeneous surfaces are required. One way to obtain crystalline and homogeneous coatings is by heat treatments after anodic oxidation. The aim of this study is to evaluate the influence of heat treatments on the thickness, morphology, and crystalline structure of the TiO2anodic coatings. The characterization was performed by optical and scanning electron microscopy, X-ray diffraction, and X-ray reflectometry. Coatings with different colors of interference were obtained. There were no significant changes in the surface morphology and roughness after heat treatment of 500°C. Heat treated coatings have different proportions of the crystalline phases, depending on the voltage of anodic oxidation and the temperature of the heat treatment.


2021 ◽  
Author(s):  
Mei Yang ◽  
Yishu Zhang ◽  
Haoxing You ◽  
Richard Smith ◽  
Richard D. Sisson

Abstract Selective laser melting (SLM) is an additive manufacturing technique that can be used to make the near-net-shape metal parts. M2 is a high-speed steel widely used in cutting tools, which is due to its high hardness of this steel. Conventionally, the hardening heat treatment process, including quenching and tempering, is conducted to achieve the high hardness for M2 wrought parts. It was debated if the hardening is needed for additively manufactured M2 parts. In the present work, the M2 steel part is fabricated by SLM. It is found that the hardness of as-fabricated M2 SLM parts is much lower than the hardened M2 wrought parts. The characterization was conducted including X-ray diffraction (XRD), optical microscopy, Scanning Electron Microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS) to investigate the microstructure evolution of as-fabricated, quenched, and tempered M2 SLM part. The M2 wrought part was heat-treated simultaneously with the SLM part for comparison. It was found the hardness of M2 SLM part after heat treatment is increased and comparable to the wrought part. Both quenched and tempered M2 SLM and wrought parts have the same microstructure, while the size of the carbides in the wrought part is larger than that in the SLM part.


2021 ◽  
Vol 234 ◽  
pp. 00106
Author(s):  
Houda Labjar ◽  
Hassan Chaair

The synthesis of apatite silicated Ca10(PO4)6-x(SiO4)x(OH)2-x (SiHA) with 0≤x≤2 was investigated using a wet precipitation method followed by heat treatment using calcium carbonate CaCO3 and phosphoric acid H3PO4 and silicon tetraacetate SiC8H20O4 (TEOS) in medium of water ethanol, with three different silicate concentrations. After drying, the samples are ground and then characterized by different analytical techniques like X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR) and Scanning electron Microscopy (SEM) and chemical analysis.


2018 ◽  
Vol 25 (08) ◽  
pp. 1950023 ◽  
Author(s):  
ARKADEB MUKHOPADHYAY ◽  
TAPAN KUMAR BARMAN ◽  
PRASANTA SAHOO

The present work reports the deposition of a quaternary Ni-B-W-Mo coating on AISI 1040 medium carbon steel and its characterization. Quaternary deposits are obtained by suitably modifying existing electroless Ni-B bath. Composition of the as-deposited coating is analyzed by energy dispersive X-ray spectroscopy. The structural aspects of the as-deposited and coatings heat treated at 300[Formula: see text]C, 350[Formula: see text]C, 400[Formula: see text]C, 450[Formula: see text]C and 500[Formula: see text]C are determined using X-ray diffraction technique. Surface of the as-deposited and heat-treated coatings is examined using a scanning electron microscope. Very high W deposition could be observed when sodium molybdate is present in the borohydride-based bath along with sodium tungstate. The coatings in their as-deposited condition are amorphous while crystallization takes place on heat treatment. A nodulated surface morphology of the deposits is also observed. Vickers’ microhardness and crystallite size measurement reveal inclusion of W and Mo results in enhanced thermal stability of the coatings. Solid solution strengthening of the electroless coatings by W and Mo is also observed. The applicability of kinetic strength theory to the hardening of the coatings on heat treatment is also investigated. Corrosion resistance of Ni-B-W-Mo coatings and effect of heat treatment on the same are also determined by electrochemical techniques.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1883 ◽  
Author(s):  
Chao Peng ◽  
Guangxue Chen

In this study, poly(vinyl alcohol) (PVA) composite films enhanced by α-chitin nanowhiskers (ChWs) were prepared through heat treatment. The obtained membranes were assessed by means of FTIR spectroscopy, X-ray diffraction, thermogravimetric analysis, regular light transmittance, mechanical tests, permeability and water absorption. The influence of the nano-component and heat treatment on the mechanical, thermal and water-resistant properties of the composite membrane were analyzed. From the results of the work, the produced films with excellent barrier properties and inexpensive raw processed materials have great prospects in packaging applications.


Author(s):  
Santanu Duari ◽  
Arkadeb Mukhopadhyay ◽  
Tapan Kumar Barman ◽  
Prasanta Sahoo

The present chapter aims to determine optimal tribo-testing condition for minimum coefficient of friction and wear depth of electroless Ni-P, Ni-P-W and Ni-P-Cu coatings under lubrication using grey relational analysis. Electroless Ni-P, Ni-P-W and Ni-P-Cu coatings are deposited on AISI 1040 steel substrates. They are heat treated at suitable temperatures to improve their hardness. Coating characterization is done using scanning electron microscope, energy dispersive X-Ray analysis and X-Ray diffraction techniques. Typical nodulated surface morphology is observed in the scanning electron micrographs of all the three coatings. Phase transformation on heat treating the deposits is captured through the use of X-Ray diffraction technique. Vicker's microhardness of the coatings in their as-deposited and heat treated condition is determined. Ni-P-W coatings are seen to exhibit the highest microhardness. Friction and wear tests under lubricated condition are carried out following Taguchi's experimental design principle. Finally, the predominating wear mechanism of the coatings is discussed.


2021 ◽  
Vol 1016 ◽  
pp. 379-384
Author(s):  
Eider Del Molino ◽  
Teresa Gutierrez ◽  
Mónica Serna-Ruiz ◽  
Maribel Arribas ◽  
Artem Arlazarov

The aim of this work was to study the influence of quenching and partitioning temperatures combined with various levels of Mn and Ni contents on the austenite stabilization along the quenching and partitioning (Q&P) cycle. Three steels with 2 wt.%, 4 wt.% and 6 wt.% manganese and one steel with 2 wt.% nickel content were investigated. Phase transformation temperatures and critical cooling rates were obtained experimentally using dilatometer for each alloy. Q&P cycles with different quenching and partitioning temperatures were also done in dilatometer, thus, allowing monitoring of the expansion/contraction during the whole Q&P cycle. Microstructure characterization was performed by means of a Scanning Electron Microscope and X-Ray Diffraction to measure retained austenite content. It was found that, strongly depending on the Q&P conditions, austenite stabilization or decomposition occurs during partitioning and final cooling. In case of high partitioning temperature cycles, austenite reverse transformation was observed. Certain cycles resulted in a very effective austenite stabilization and interesting microstructure.


2021 ◽  
Vol 1016 ◽  
pp. 1299-1304
Author(s):  
Naidu Seetala ◽  
Deidre Henderson ◽  
Jumel Jno-Baptiste ◽  
Hao Wen ◽  
Sheng Min Guo

The microstructure and magnetization of SmCo5 micro-particles may be used as feedstock for 3D printing to make miniature strong magnets. Thus, the magnetic response and microstructures of commercially available SmCo5 micro-particles were studied under various heat treatments using a high wattage laser. The magnetization of laser heat treated powders at 50-watt showed an increase in magnetization, while the 75-watt melt showed a little to no change. Unfortunately, the coercivity of both laser heat treated samples decreased significantly. Oxidation during the heat treatment is suspected to result in low coercivity. Purging with argon-gas prior to laser heating showed improved coercivity. To further minimize the oxidation problem a set of SmCo5 powder was reduced prior to laser heat treatment using a constant flow of hydrogen gas while being heated at various temperatures from 100 oC to 400 oC for a period of ~4 hours. The results show that the magnetization generally increases with the temperature, while the coercivity decreases significantly. Another set of SmCo5 was annealed in a vacuum furnace for one hour at temperatures between 200 oC and 400 oC in order to confirm that no hydride phases were formed during reduction. The magnetization and coercivity showed similar variations with annealing temperature to those for the reduced powders confirming that these variations may be due to change in crystal structure rather than formation of hydrides. X-ray Diffraction (XRD) studies were performed to identify the changes in crystal phases.


2005 ◽  
Vol 20 (9) ◽  
pp. 2480-2485 ◽  
Author(s):  
Kohei Kadono ◽  
Tatsuya Suetsugu ◽  
Takeshi Ohtani ◽  
Toshihiko Einishi ◽  
Takashi Tarumi ◽  
...  

Copper(I) chloride and bromide nanoparticle-dispersed glasses were prepared by means of a conventional copper staining. The staining was performed by the following process: copper stain was applied on the surfaces of Cl−- or Br−-ion-containing borosilicate glasses, and the glasses were heat-treated at 510 °C for various times. Typical exciton bands observed in the absorption spectra of the glasses after the heat treatment indicated that CuCl and CuBr particles were formed in the surface region of the glasses. The average sizes of the CuCl and CuBr particles in the glasses heat-treated for 48 h were estimated at 4.8 and 2.7 nm, respectively. The nanoparticles were also characterized by x-ray diffraction and transmission electron microscopy. Depth profiles of Cu and CuBr concentration in the glass heat-treated for 48 h were measured. Copper decreased in concentration monotonously with depth, reaching up to 60 μm, while the CuBr concentration had a maximum at about 25 μm in depth.


Sign in / Sign up

Export Citation Format

Share Document