Coating Mortar Using Rice Husk Ash as Binding

2012 ◽  
Vol 727-728 ◽  
pp. 1502-1507 ◽  
Author(s):  
Izabelle Marie Trindade Bezerra ◽  
Suélen Silva Figueiredo ◽  
João Batista Queiroz de Carvalho ◽  
Gelmires Araújo Neves ◽  
Jozilene de Souza ◽  
...  

The use of agricultural waste has become a necessity due to the high environmental cost derived from its improper disposal in nature. In this scenario, rice husks, as well as the ash produced by burning, became worrying in certain regions of the country due to the large volume produced annually [.

2020 ◽  
Vol 42 ◽  
pp. 48
Author(s):  
Marcela Trojahn Nunes ◽  
Fabiele Schaefer Rodrigues ◽  
Jocenir Boita

The use of agricultural waste has become a necessity due to its high environmental cost. As an example of this, we have rice husk ash (CCA), produced by the indiscriminate burning of rice husk, as well as the need to look for alternatives to reuse the waste sustainably, either by applying it to nanomaterials or by extracting SiO2 present in rice husk ash. This study addresses the use of characterization techniques for rice husk ash residue, showing the quality of SiO2 present in the residue.


2018 ◽  
Vol 156 ◽  
pp. 05020 ◽  
Author(s):  
Bastian Arifin ◽  
Sri Aprilia ◽  
Pocut Nurul Alam ◽  
Farid Mulana ◽  
Amri Amin ◽  
...  

The current development of the packaging industry is increasing as well as the dependence of non-renewable oil-based materials encouraging researchers to look for alternative polymeric strengthening materials from biomass. Especially used from agricultural waste because it is cheap and widely available in nature and it can be renewed. In this study, agriculture waste used were rice husk and rice husks ash that prepared as organic nanofillers for the development of polymer nanocomposites. XRF analysis showed that rice husk ash has the highest silica (SiO2) content of 89. 835%, while rice husk has SiO2 contents of 82.540%. From XRD analysis on 2 theta there is a crystalline silica region at 22° and this analysis shows the sample is amorphous. FTIR analysis showed Si-H at peak 2339 cm−1 in rice husk and 2129 cm−1 for rice husk ash.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3440
Author(s):  
Mohd Na’im Abdullah ◽  
Mazli Mustapha ◽  
Nabihah Sallih ◽  
Azlan Ahmad ◽  
Faizal Mustapha ◽  
...  

The utilisation of rice husk ash (RHA) as an aluminosilicate source in fire-resistant coating could reduce environmental pollution and can turn agricultural waste into industrial wealth. The overall objective of this research is to develop a rice-husk-ash-based geopolymer binder (GB) fire-retardant additive (FR) for alkyd paint. Response surface methodology (RSM) was used to design the experiments work, on the ratio of RHA-based GB to alkyd paint. The microstructure behaviour and material characterisation of the coating samples were studied through SEM analysis. The optimal RHA-based GB FR additive was formulated at 50% wt. FR and 82.628% wt. paint. This formulation showed the result of 270 s to reach 200 °C and 276 °C temperature at equilibrium for thermal properties. Furthermore, it was observed that the increased contents of RHA showed an increment in terms of the total and open porosities and rough surfaces, in which the number of pores on the coating surface plays an important role in the formation of the intumescent char layer. By developing the optimum RHA-based GB to paint formulation, the coating may potentially improve building fire safety through passive fire protection.


2022 ◽  
Author(s):  
Sunita Kumari ◽  
Dhirendra Singhal ◽  
Rinku Walia ◽  
Ajay Rathee

Abstract The present project proposes to utilize rice husk and maize cob husk ash in the cement to mitigate the adverse impact of cement on environment and to enhance the disposal of waste in a sustainable manner. Ternary concrete / MR concrete was prepared by using rise husk and maize cob ash with cement. For the present project, five concrete mixes MR-0 (Control mix), MR-1 (Rice husk ash 10% and MR-2.5%), MR-2 (Rice husk ash 10% and MR-5%), MR-3 (Rice husk ash 10% and MR-2.5%), MR-4 (Rice husk ash 10% and MR-2.5%) were prepared. M35 concrete mix was designed as per IS 10262:2009 for low slump values 0-25mm. The purpose is to find the optimum replacement level of cement in M35 grade ternary concrete for I – Shaped paver blocks.In order to study the effects of these additions, micro-structural and structural properties test of concretes have been conducted. The crystalline properties of control mix and modified concrete are analyzed by Fourier Transform Infrared Spectroscope (FTIR), Scanning Electron Microscopy (SEM), and X-Ray Diffraction (XRD). The results indicated that 10% Rice husk ash and 5% maize cob ash replaced with cement produce a desirable quality of ternary concrete mix having good compressive strength. The results of SEM analysis indicated that the morphology of both concrete were different, showing porous structure at 7 days age and become unsymmetrical with the addition of ashes. After 28 day age, the control mix contained more quantity of ettringite and became denser than ternary concrete. XRD analysis revealed the presence of portlandite in large quantity in controlled mix concrete while MR concrete had the partially hydrated particle of alite.


2014 ◽  
Vol 699 ◽  
pp. 221-226
Author(s):  
Nurul Hanim Razak ◽  
Md. Razali Ayob ◽  
M.A.M. Zainin ◽  
M.Z. Hilwa

Eggshells and rice husk, two types of notable agricultural waste were used as bioadsorbent to remove Methylene Blue dye (MBD) in aqueous solution. This study was to investigate the performance of these two bioadsorbents in removing MBD. The removal percentage, adsorption capacity, and porosity characterization were examined. The method applied was a physical filtration. UV-VIS Spectrophotometer was used to determine the efficiency of the bioadsorbents in MBD adsorption. The highest removal percentage at the most concentrated MBD were 51% and 98% for eggshells and rice husks respectively. Meanwhile the characterization of rice husks pore size and volume proves that higher adsorptivity towards dye compares to eggshells porosity. It was concluded that the eggshells and rice husks bioadsorbents was successful to treat industrial textile wastewater with rice husks as the most efficient bioadsorbent in removing MBD.


2015 ◽  
Vol 1113 ◽  
pp. 198-203 ◽  
Author(s):  
Farrah Zuhaira Ismail ◽  
Mohamad Nidzam Rahmat ◽  
Norishahaini M. Ishak

Noise has detrimental effects on human lives and it is a nuisance to the environment. As many of the available sound reduction materials in the current market are hazardous, there are demands for alternative sustainable materials to reduce the noise problem. Therefore, the aim of this research is to study the potential of using an agricultural waste as sound absorption panel. For the purpose of this study, the combination of two materials was under studied; rice husks and sugarcane baggase. There were two main objective of the research; first is to develop absorption panels from the combination of rice husks and sugarcane baggase at different percentage of mixture. Second objective is to identify the absorption rate of the panels. The study encompasses the fabrication of the sustainable sound panels using the rice husk and sugarcane fibre and bond using Phenol formaldehyde (PF). Five panels of sized 12 inch x 12 inch and 12 mm thick were fabricated. The absorption coefficient of the samples was done at the acoustic lab, Faculty of Engineering & Build Environment, Universiti Kebangsaan Malaysia (UKM), Bangi. The panels were tested using an impedance tube. The procedure of the test was carried out in accordance with ISO 10534-2:1998 standards. Based on the results, sample 1 gave the highest absorption coefficient compared to sample 2, 3, 4 and 5. It can be concluded that the acoustic panel made from a mixture of 100% rice husks had higher absorption co-efficient compared to the performance of the other samples given the fact that the characteristic of the rice husks which has air gap in every single piece of rice husk. The spongy properties of the sample 1 panel has created many void spaces which encouraged more sound absorption capability due to the porous surface of the panel. Sound absorption is very much affected by the availability of porosity level of the panel. Thus, further studies on other potential materials from waste should be conducted.Keywords. Noise, Agriculture waste, sound, absorption panels, absorption co-efficient


Tibuana ◽  
2020 ◽  
Vol 3 (01) ◽  
pp. 47-52
Author(s):  
Yanatra budi Pramana ◽  
M. Amin Pahlevi ◽  
Zhulianto Ashari ◽  
M. Fariz Effendi ◽  
Fibra Gilang Ramadhan

Utilization of rice husks in Indonesia in general is still very limited. Utilization of silica contained in rice husk ash, which has been used, among others, in the manufacture of sodium silicate. Silica compounds themselves can be used in and manufacturing basic materials for electronic and ceramic equipment, glass, rubber, cosmetic products, and pharmaceuticals. The addition of Mg can increase the silica content (SiO2) in rice husk ash. The best results show an effective Mg ratio of Mg addition to increase silica content is 1: 1. produces the highest amount of silica which is 58.12% of the rice husk ash with a size of 140 mesh


2018 ◽  
Vol 3 (2) ◽  
Author(s):  
Eryani . ◽  
Sri Aprilia ◽  
Farid Mulana

<p>Agricultural waste such as rice straw, rice husk and rice husk ash have not been utilized properly. This waste of agricultural produce can actually be used as an alternative to bionanofiller because it contains an excellent source of silica. The silica content contained in the rice waste when combined with the polymer matrix can produce composites having high thermal and mechanical properties. Characterization of bionanofiller from this rice waste is done by SEM, XRF, FTIR, XRD and particle density. The result of SEM analysis from this rice waste is feasible to be used as filler because it has size 1 μm. Likewise with the results of XRF analysis that rice waste contains a high enough silica component that is 80.6255% - 89.83%. FTIR test results also show that bionanoparticles from rice waste have the same content of silica. In the XRD analysis the best selective gain of rice waste is found in rice husk ash which is characteristic of amorp silica at a range of 2ϴ = 22<br />. The largest density analysis of paddy waste was found in rice husk 0.0419 gr / cm , followed by rice straw by of 0.0417 gr / cm 3 and rice hulk ash 0.0407 g / cm 3</p>


2019 ◽  
Vol 798 ◽  
pp. 364-369 ◽  
Author(s):  
Khemmakorn Gomonsirisuk ◽  
Parjaree Thavorniti

The aim of this work is to study the feasibility of preparation of fly ash based geopolymer using sodium water glass from agricultural waste as alternative activators. Rice husk ash and bagasse ash were used as raw materials for producing sodium water glass solution. The sodium water glass were produced by mixing rice husk ash and bagasse ash with NaOH in ball mill and boiling. The prepared sodium water glass were analyzed and used in geopolymer preparation process. The geopolymer paste were prepared by adding the obtained water glass and NaOH with fly ash. After cured at ambient temperature for 7 days, mechanical properties were investigated. Bonding and phases of the geopolymer were also characterized. The geopolymer from rice husk ash presented highest compressive strength about 23 MPa while the greatest for bagasse ash was about 16 MPa.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1524 ◽  
Author(s):  
Jing Liu ◽  
Chunyan Xie ◽  
Chao Fu ◽  
Xiuli Wei ◽  
Dake Wu

When properly processed, rice husk ash (RHA) comprises a large amount of SiO2, which exhibits a high pozzolanic activity and acts as a good building filler. In this paper, the effects of rice husk ash content, acid pretreatment, and production regions on the compressive and flexural properties and water absorption of a cement paste were studied. The experimental results showed that the compressive strength of the rice husk ash was the highest with a 10% content level, which was about 16.22% higher than that of the control sample. The rice husk after acid pretreatment displayed a higher strength than that of the sample without the acid treatment, and the rice husk from the Inner Mongolia region indicated a higher strength than that from the Guangdong province. However, the flexural strength of each group was not significantly different from that of the blank control group. The trend observed for the water absorption was similar to that of the compressive strength. The variation in the RHA proportions had the greatest influence on the properties of the paste specimens, followed by the acid pretreatments of the rice husks. The production regions of the rice husks indicated the least influence.


Sign in / Sign up

Export Citation Format

Share Document