Characterization of New Occurrences of Clays in the City of Pedra Lavrada-PB, for Use as Ceramics Raw Materials

2012 ◽  
Vol 727-728 ◽  
pp. 775-780 ◽  
Author(s):  
F.A. Silva ◽  
I.D.S. Pereira ◽  
Suellen Lisboa Dias ◽  
Gelmires Araújo Neves ◽  
Hélio Lucena Lira

Paraiba State is a major instance of non-metallic mineral mainly of bentonite clay, balls clays, kaolin, feldspar, quartz, limestone, mica, etc. Recently it was discovered new deposits of clay in the region of Cubatí and Pedra Lavrada, PB, thereby providing an expansion of mineral inputs in the region. The aim of thi study is to characterize the clays from the city of Pedra Lavrada - PB, to be used as ceramic raw materials. The mineralogy of the clays was performed using the following techniques: laser diffraction (AG), thermogravimetric and differential thermal analysis (TG and DTA), chemical analysis (EDX), X-ray diffraction (XRD), cations exchange capacity (CEC) and surface area (AE). The specimens were molded by compression of 2 MPa, with dimensions of 60mm x 20 mm x 4 mm. The followed physical and mechanical properties were determined: firing shrinkage, water absorption, bending stress rupture and modulus after calcined at 800, 900, 1000, 1100 and 1200 °C. The results showed that the clays present smectite and kaolinite in their mineralogical composition and through the physical and mechanical properties this clays could probably be used as ceramic raw materials.

Materials ◽  
2018 ◽  
Vol 11 (7) ◽  
pp. 1255 ◽  
Author(s):  
Piergiorgio Tataranni ◽  
Giulia Besemer ◽  
Villiam Bortolotti ◽  
Cesare Sangiorgi

There is growing interest in construction field issues related to environmental protection, energy saving and raw materials. Therefore, the interest in recycling waste materials to produce new construction ones is constantly increasing. This study proposes a new methodology to produce lightweight aggregates (LWAs) by alkali-activation of two different waste powders: a digested spent bentonite clay and a basalt powder. Metakaolin, as secondary precursor, was added to the mixtures according to mix-design proportions, to improve the mechanical properties of the final materials, while a specific activators mix of Sodium Silicate and Sodium Hydroxide enabled the alkali-activation. The expansion process, on the other hand, was obtained using Peroxide within the liquid mix. The experimental LWAs were analyzed and tested in compliance with the EN 13055-1 standard. A more in-depth analysis on LWAs’ air voids content and porosity was also carried out by the means of Mercury Intrusion Porosimetry and Nuclear Magnetic Resonance. The results were compared with those obtained from commercial Lightweight Expanded Clay Aggregate, which represents one of the most common LWAs in the construction field. According to the presented preliminary results, the use of alkali-activated waste powders seems to be a suitable solution for the production of eco-friendly LWAs by allowing the recycling of waste materials and energy saving for their production.


2016 ◽  
Vol 677 ◽  
pp. 186-190 ◽  
Author(s):  
Monika Čáchová ◽  
Eva Vejmelková ◽  
Kateřina Šestáková ◽  
Pavel Reiterman ◽  
Martin Keppert ◽  
...  

This article is focused on cement based composites. Two cements differing in mineralogical composition are utilised as main binder in composites mixtures. Results of measured physical parameters of studied materials are presented. For the sake of comparison, a reference material with Portland cement was also prepared. Basic physical properties (measured by water vacuum saturation method and by helium pycnometry), characterizations of pore system (determined by mercury porosimetry) and mechanical properties are the matter of this study. Composites show various open porosity; the results of open porosity of materials containing special cements show higher values, in comparison with composite based on Portland cement. This fact of course influences other material characteristics - mainly mechanical properties.


2019 ◽  
Vol 7 (2) ◽  
Author(s):  
Dendi Prayoga ◽  
. Dirhamsyah ◽  
. Nurhaida

This research aimed to examine the physical and mechanical properties of particle boards based on the composition of raw materials and adhesive content and know the treatment of the composition of raw materials and the best adhesive content and meet the standard JIS A 5908-2003. The research was conducted at Wood Workshop Laboratory, Wood Processing Laboratory Faculty of Forestry,Tanjungpura University and Laboratory of PT. Duta Pertiwi Nusantara Pontianak. The adhesive used is Urea Formaldehyde with 52% Solid Content. Comparison of the composition of rice husks and sengon varies namely rice husk 50%: sengon 50%, rice husk 60%: sengon 40% and rice husk 70%: sengon 30%  and variations in the levels of UF adhesives, namely 14% and 16%, with target density 0,7 gr/cm3. The particleboard was 30 cm x 30 cm x 1 cm Pressing at temperature 140oC for 8 minutes, with  pressure of 25 kg/cm2. The research results of the study of density and moisture content meet the standards JIS A 5908-2003. The best particle values of rice husk and sengon  with composition a ratio of  rice husk 50%: sengon 50% , 16% adhesive content  16%, with density value of  0,7072 gr/cm3, moisture content 9,1949 %, thick development 12,3210 %, water absorption 68,8270 %, MOE 12110,7273 kg/cm2, MOR 161,0025 kg/cm2, firmness sticky 1,9320 kg/cm2, screw holding strength 62,3124 kg.Keywords : adhesive, composition, particle board, rice husk, sengon


2019 ◽  
Vol 7 (1) ◽  
Author(s):  
Ridho Pratama ◽  
M Dirhamsyah ◽  
. Nurhaida

This study aims to examine the physical and mechanical properties of gypsum board from Acacia mangium Willd wood waste based on gypsum content and wood powder size. This study refers to the JIS A 5417-1992 standard. This research were conducted at Wood Work Shop laboratory for the preparation of raw materials, Wood Technology laboratory Faculty of Forestry for board making and testing the physical properties of gypsum boards, and  PT. Duta Pertiwi Nusantara laboratory to test the mechanical properties of the gypsum board. The material used is  A. mangium W. Wood powder, gypsum flour, water and borax. The study uses Factorial Completely Randomized Design (CRD) with two factors, namely factor A (gypsum content) which consists of gypsum content of 400%, 500% and 600% of the weight of A. mangium W. wood powder, and factors B (wood powder size) consists of 20 mesh passes 40 mesh retained and 40 mesh passes 60 mesh retained. The results showed that the density (600% gypsum content of 40 and 60 mesh retained wood powder size), moisture content, thickness swelling, MOE (600% gypsum content of 40 and 60 mesh retained wood powder size) fulfill JIS A5417-1992 standard. The best gypsum board is gypsum board with gypsum content of 600% with a wood powder size is 40 mesh.Keyword: Acacia mangium, gypsum board, gypsum content, wood powder size.


Clay Minerals ◽  
2010 ◽  
Vol 45 (2) ◽  
pp. 229-240 ◽  
Author(s):  
M. Rebelo ◽  
F. Rocha ◽  
E. Ferreira Da Silva

AbstractThe use of pelitic geological materials for the treatment of muscle-bone-skin pathologies, by application of a cataplasm made of clay and mineral water mixture, is currently receiving attention and interest from the general public and scientific community. In Portugal there are several natural occurrences of clays/muds which are used for pelotherapy and/or geotherapy. These are carried out either indoors (thalassotherapy and thermal centres) or outdoors, in natural sites generally located near the seaside. The aim of this study is to assess the mineralogical and physicochemical properties of Portuguese raw materials for therapeutic purposes. These materials were collected from different Portuguese Mesozoic-Cenozoic geological formations located in the neighbourhood of thermal centres or at beaches known from their empirical applications. X-ray diffraction (XRD) and scanning electron microscopy (SEM-EDS) were used to assess the mineralogical composition of these clays. Physicochemical properties, such as specific surface area, cation exchange capacity, plasticity/abrasiveness indices and heat diffusiveness were also determined. Having distinct geological ages and genesis, the materials examined are mainly illitic. Less abundant kaolinite and smectite are also present. With respect to their physicochemical properties, all samples have good thermal properties which make them potentially suitable for therapeutic or aesthetic purposes.


2018 ◽  
Vol 916 ◽  
pp. 195-199 ◽  
Author(s):  
Jindrich Melichar ◽  
Vit Cerný ◽  
Jan Fleischhacker ◽  
Rostislav Drochytka

Aerated concrete is lightweight building material with excellent thermos-technical properties compared to its strengths, easy workability and economic efficiency. It is material with long tradition of manufacturing since 1924 but its potential is yet possible to be extended. Since the beginning pure ingredients such as lime and silica sand has been used. Nowadays we are looking for ways to replace these expensive raw materials with cheaper alternatives. One of the most important mechanical properties of each material is its strength. In case of aerated concrete the bearer of strength is mineral tobermorite. It is created by reaction of silicon oxides and lime at hydrothermal conditions. It belongs to the group of calcium hydrosilicates with chemical formula Ca5Si6O16(OH)2·4H2O. Main goal of this paper is proposal for modification of the raw materials composition and autoclave regime of aerated concrete using aluminium hydroxide in order to improve final mechanical properties and mineralogical composition.


2015 ◽  
Vol 660 ◽  
pp. 9-16 ◽  
Author(s):  
Wan Mastura Wan Ibrahim ◽  
Kamarudin Hussin ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Aeslina Abdul Kadir ◽  
Mohammed Binhussain

Bricks are widely used as a construction and building material due to its properties. Recent years have seen a great development in new types of inorganic cementitious binders called ‘‘geopolymeric cement’’ around the world. This prompted its use in bricks, which improves the greenness of ordinary bricks. The development of fly ash-based geopolymer lightweight bricks is relatively new in the field of construction materials. This paper reviews the uses of fly ash as a raw materials and addition of foaming agent to the geopolymeric mixture to produce lightweight bricks. The effects on their physical and mechanical properties have been discussed. Most manufactured bricks with incorporation of foaming agent have shown positive effects by producing lightweight bricks, increased porosity and improved the thermal conductivities of fly ash-based geopolymer bricks. However, less of performances in number of cases in terms of mechanical properties were also demonstrated.


Engineering ◽  
2021 ◽  
Vol 13 (06) ◽  
pp. 352-359
Author(s):  
Juramirza Abdiramatovich Kayumov ◽  
Matluba Nazarova ◽  
Bohodir Vohobjon Ogli Obilov ◽  
Farhodjon Mahmudjonovich Dadaboyev ◽  
Zuhra Yigitaliyevna Mamadaliyeva

Teknomekanik ◽  
2019 ◽  
Vol 2 (1) ◽  
pp. 14-19
Author(s):  
M Saddikin ◽  
Hendri Nurdin ◽  
Primawati Primawati

The raw materials of the timber industry, especially furniture, are increasingly difficult to obtain in the quantity and quality needed. The development efforts carried out were utilizing Nipah coir waste as a raw material for making particle boards. Particle boards are panel boards made of wood particles or materials containing lignocellulose. Nipah plants contain 27.3% lignin and 36.5% cellulose which has the potential to be used as raw material for particleboard production. This study aims to reveal the physical and mechanical properties of particleboards made from Nipah fruit fibre with adhesive using tapioca flour. The making of particle board is done with a ratio of 90%: 10%, 80%: 20%, 70%: 30%, 60%: 40%, by giving a pressure of 100 kg / cm2. Particle testing is carried out according to the JIS A 5908 standard (2003). From this study, the optimum results were obtained in variations of 60%:40%. The particle physical properties which have an average density value of 1.15 gr / cm3 and an average moisture content of 5.8%. While the mechanical properties obtained by the value of Modulus of Elasticity an average of 21,188.93 kg / cm2. This shows the particle board variations of 60%: 40% produced to meet the JIS A 5908 (2003) standard. Based on the analysis of the quality variations 60%: 40% of particle boards can be recommended as raw materials for interior furniture.


Sign in / Sign up

Export Citation Format

Share Document