Microstructural Studies of NiCoMnIn Magnetic Shape Memory Ribbons

2013 ◽  
Vol 738-739 ◽  
pp. 436-440 ◽  
Author(s):  
Krystian Prusik ◽  
Katarzyna Bałdys ◽  
Danuta Stróż ◽  
Tomasz Goryczka ◽  
Józef Lelątko

In present paper two ribbons of the Ni44Co6Mn36In14 (at.%) were prepared under different melt-spinning technique conditions. Microstructure of the ribbons was studied by scanning electron microscopy (SEM). Depending on the liquid ejection overpressure two types of ribbons microstructures were observed. Ribbon T1 for which ejection overpressure was 1.5 bar showed typical melt-spun ribbon microstructure consisting of a top layer of small equi-axial grains and columnar grains below. For T2 ribbon (ejection overpressure 0.2 bar) only a small fraction of the columnar grains were observed. Structure analysis of the ribbons performed by XRD showed that at room temperature both ribbons have B2 parent phase superstructure. No gamma phase precipitates were observed. In order to determine the orientation of the grains the EBSD technique was applied.

1986 ◽  
Vol 80 ◽  
Author(s):  
C. D. Anderson ◽  
R. A. Overfelt ◽  
W. F. Flanagan

AbstractSamples of Fe76RE16B8 have been prepared by melt spinning and plasma deposition. The samples were fully saturated by cooling fran 350°C in a 5 kOe field. The room temperature coercivities of these samples are reported and correlated to the microstructures revealed by scanning electron microscopy. Subsequent heat treatments are shown to either increase or decrease the intrinsic coercivities depending upon the solidification rate that each sample experienced.


2016 ◽  
pp. 3287-3297
Author(s):  
Tarek El Ashram ◽  
Ana P. Carapeto ◽  
Ana M. Botelho do Rego

Tin-bismuth alloy ribbons were produced using melt-spinning technique. The two main surfaces (in contact with the rotating wheel and exposed to the air) were characterized with Optical Microscopy and AFM, revealing that the surface exposed to the air is duller (due to a long-range heterogeneity) than the opposite surface. Also the XPS chemical composition revealed many differences between them both on the corrosion extension and on the total relative amounts of tin and bismuth. For instance, for the specific case of an alloy with a composition Bi-4 wt % Sn, the XPS atomic ratios Sn/Bi are 1.1 and 3.7 for the surface in contact with the rotating wheel and for the one exposed to air, respectively, showing, additionally, that a large segregation of tin at the surface exists (nominal ratio should be 0.073). This segregation was interpreted as the result of the electrochemical process yielding the corrosion products.


2021 ◽  
Vol 21 (4) ◽  
pp. 2552-2557
Author(s):  
Nguyen Hai Yen ◽  
Nguyen Hoang Ha ◽  
Pham Thi Thanh ◽  
Nguyen Huy Ngoc ◽  
Tran Dang Thanh ◽  
...  

In this work, we investigated magnetic properties and magnetocaloric effect in Fe90−xCoxZr7Cu1B2 (x = 0, 1, 2, 3 and 4) melt-spun ribbons. The ribbons were prepared by using a melt-spinning method with a tangential velocity of a copper wheel of 40 m·s-1. The obtained ribbons are almost amorphous. The alloys exhibit typical soft magnetic behavior with low coercivity at room temperature. A minor replacement of Fe by Co gives an increment in Curie temperature (TC) of the alloys to higher temperatures. The TC of the alloys increases from 242 to 342 K with an increase of x from 0 to 4. Maximum magnetic entropy change, ΔSm max, of the alloys, was found to be larger than 0.7 J·kg-1·K-1 in a magnetic field change ΔH of 12 kOe for all the concentrations of Co. High refrigerant capacitys (RC >100 J ·kg-1 with ΔH = 12 kOe) at room temperature region have been obtained for the alloys. The large magnetocaloric effect near room temperature suggests that the alloys can be considered as magnetic refrigerants in the range of 250–350 K.


Nanoscale ◽  
2018 ◽  
Vol 10 (4) ◽  
pp. 1970-1977 ◽  
Author(s):  
Saravanan Muthiah ◽  
R. C. Singh ◽  
B. D. Pathak ◽  
Piyush Kumar Avasthi ◽  
Rishikesh Kumar ◽  
...  

An unprecedented ZT ∼ 0.82 realized in spark plasma sintered Al-doped MnSi1.73 HMS, melt spun at high cooling rates.


2014 ◽  
Vol 636 ◽  
pp. 97-100 ◽  
Author(s):  
Ai Qin Wang ◽  
Hui Hui Han ◽  
Jing Pei Xie ◽  
Ji Wen Li

In the present work, rapidly solidified Al-21Si-0.8Mg-1.5Cu-0.5Mn alloys strips was prepared by melt-spinning technique. The microstructure morphology and phase structures of experimental alloy were characterized by means of scanning electron microscopy (SEM), transmission electric microscopy (TEM) and XRD technique. The results show that the grains were refined and the micro-nanocomposite structural were formed under rapid solidification. The nucleation and growth of primary silicon were suppressed and primary silicon could not deposited, meanwhile, α-Al phase was nucleated which prior to eutectic. The microstructure of the Al-21Si alloy was composed of micro-nanostructured α-Al phase and feather-needles-like eutectic α-Al+β-Si phase. The hypereutectic Al-21Si alloy showed the hypoeutectic microstructure. The rapidly solidified Al-21Si alloy microstructure formation mechanism has also been discussed.


1992 ◽  
Vol 275 ◽  
Author(s):  
T. J. Folkerts ◽  
S. I. Yoo ◽  
Youwen Xu ◽  
M. J. Kramer ◽  
K. W. Dennis ◽  
...  

ABSTRACTUsing a novel melt-spinning technique, we have produced highly disordered NdBa2Cu3O7−x and GdBa2Cu3Oy−x materials. Samples which were melt-spun in an O2 environment consist of nanocrystals with the tetragonal REBa2Cu3O7−x structure: samples which were processed in an N2 environment consist of an amorphous matrix with small amounts of crystalline BaCu2O2, as shown by x-ray diffraction and electron microscopy. High temperature XRD studies indicate that the BaCu2O2 is eliminated during heating to 500°C in O2 and that the REBa2Cu3O7−x Phase recrystallizes directly from the amorphous matrix at temperatures below 800°C. Preliminary magnetization measurements show that higher temperature heat treatments are needed to restore superconductivity.


2012 ◽  
Vol 721 ◽  
pp. 53-58 ◽  
Author(s):  
Daisuke Imamuara ◽  
Takashi Todaka ◽  
Masato Enokizono

Recently, progress of the intelligent materials plays a big role in development of science and technology. We have ever tried to develop ferromagnetic shape memory alloys to expand application range of the common non-magnetic shape memory alloys, which are typical intelligent material. However the saturation magnetization and the shape memory effect were in a relation of trade-off, so we couldn’t get a good result. In this research, we tried to develop ferromagnetic shape-memory alloys as a composite material by using the single-roll melt spinning technique. They are bilayer ribbons, which have both shape memory layer and magnetic layer.


2019 ◽  
Vol 234 (11-12) ◽  
pp. 757-767 ◽  
Author(s):  
Mohammed Mundher Jubair ◽  
Mohammed S. Gumaan ◽  
Rizk Mostafa Shalaby

AbstractThis study investigates the structural, mechanical, thermal and electrical properties of B-1 JINHU, EDSYN SAC5250, and S.S.M-1 commercial materials, which have been manufactured at China, Malaysia, and Germany, respectively. The commercial materials have been compared with the measurements of Sn–Ag–Cu (SAC) melt-spun materials that are only indicative of what can be expected for the solder application, where the solder will have quite different properties from the melt-spun materials due to the effects of melt-spinning technique. Adding Cu to the eutectic Sn–Ag melt-spun material with 0.3 wt.% significantly improves its electrical and mechanical properties to serve efficiently under high strain rate applications. The formed Cu3Sn Intermetallic compound (IMC) offers potential benefits, like high strength, good plasticity, consequently, high performance through a lack of dislocations and microvoids. The results showed that adding 0.3 wt.% of Cu has improved the creep resistance and delayed the fracture point, comparing with other additions and commercial solders. The tensile results showed some improvements in 39.3% tensile strength (25.419 MPa), 376% toughness (7737.220 J/m3), 254% electrical resistivity (1.849 × 10−7 Ω · m) and 255% thermal conductivity (39.911 w · m−1 · k−1) when compared with the tensile strength (18.24 MPa), toughness (1625.340 J/m3), electrical resistivity (6.56 × 10−7 Ω · m) and thermal conductivity (11.250 w · m−1 · k−1) of EDSYN SAC5250 material. On the other hand, the Sn93.5–Ag3.5–Cu3 melt-spun solder works well under the harsh thermal environments such as the circuits located under the automobiles’ hood and aerospace applications. Thus, it can be concluded that the melt-spinning technique can produce SAC melt-spun materials that can outperform the B-1 JINHU, EDSYN SAC5250 and S.S.M-1 materials mechanically, thermally and electrically.


2012 ◽  
Vol 186 ◽  
pp. 251-254 ◽  
Author(s):  
Wojciech Maziarz

Microstructure of Ni50-xCoxMn35.5In14.5 (x=0, 3, 5) melt-spun ribbons was investigated using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The typical layered microstructure consisting of oriented columnar grains and colonies of fine equi-axed grains was observed in the cross section of ribbons. The crystallographic structure of ribbons varied with the content of Co in alloys what affected of their Ms temperature. For the x=0 the single phase of monoclinic 14M modulated martensite was observed, but for x=3 and 5, a two phase structure of L21 austenite and monoclinic 14M or orthorhombic 10M modulated martensite were identified. Different temperature range of martensitic transformations were explained basing on valence electron concentration per atom e/a versus Ms relationship.


2013 ◽  
Vol 738-739 ◽  
pp. 247-251 ◽  
Author(s):  
Ana Druker ◽  
Paulo La Roca ◽  
Philippe Vermaut ◽  
Patrick Ochim ◽  
Jorge Malarría

At room temperature, Fe-15Mn-5Si-9Cr-5Ni alloys are usually austenitic and the application of a stress induces a reversible martensitic transformation leading to a shape memory effect (SME). However, when a ribbon of this material is obtained by melt-spinning, the rapid solidification stabilizes a high-temperature ferritic phase. The goals of this work were to find the appropriate heat treatment in order to recover the equilibrium austenitic phase, characterize the ribbon form of this material and evaluate its shape memory behaviour. We found that annealing at 1050°C for 60 min, under a protective argon atmosphere, followed by a water quenching stabilizes the austenite to room temperature. The yield stress, measured by tensile tests, is 250 MPa. Shape-memory tests show that a strain recovery of 55% can be obtained, which is enough for certain applications.


Sign in / Sign up

Export Citation Format

Share Document