Reliable Sn–Ag–Cu lead-free melt-spun material required for high-performance applications

2019 ◽  
Vol 234 (11-12) ◽  
pp. 757-767 ◽  
Author(s):  
Mohammed Mundher Jubair ◽  
Mohammed S. Gumaan ◽  
Rizk Mostafa Shalaby

AbstractThis study investigates the structural, mechanical, thermal and electrical properties of B-1 JINHU, EDSYN SAC5250, and S.S.M-1 commercial materials, which have been manufactured at China, Malaysia, and Germany, respectively. The commercial materials have been compared with the measurements of Sn–Ag–Cu (SAC) melt-spun materials that are only indicative of what can be expected for the solder application, where the solder will have quite different properties from the melt-spun materials due to the effects of melt-spinning technique. Adding Cu to the eutectic Sn–Ag melt-spun material with 0.3 wt.% significantly improves its electrical and mechanical properties to serve efficiently under high strain rate applications. The formed Cu3Sn Intermetallic compound (IMC) offers potential benefits, like high strength, good plasticity, consequently, high performance through a lack of dislocations and microvoids. The results showed that adding 0.3 wt.% of Cu has improved the creep resistance and delayed the fracture point, comparing with other additions and commercial solders. The tensile results showed some improvements in 39.3% tensile strength (25.419 MPa), 376% toughness (7737.220 J/m3), 254% electrical resistivity (1.849 × 10−7 Ω · m) and 255% thermal conductivity (39.911 w · m−1 · k−1) when compared with the tensile strength (18.24 MPa), toughness (1625.340 J/m3), electrical resistivity (6.56 × 10−7 Ω · m) and thermal conductivity (11.250 w · m−1 · k−1) of EDSYN SAC5250 material. On the other hand, the Sn93.5–Ag3.5–Cu3 melt-spun solder works well under the harsh thermal environments such as the circuits located under the automobiles’ hood and aerospace applications. Thus, it can be concluded that the melt-spinning technique can produce SAC melt-spun materials that can outperform the B-1 JINHU, EDSYN SAC5250 and S.S.M-1 materials mechanically, thermally and electrically.

2016 ◽  
pp. 3287-3297
Author(s):  
Tarek El Ashram ◽  
Ana P. Carapeto ◽  
Ana M. Botelho do Rego

Tin-bismuth alloy ribbons were produced using melt-spinning technique. The two main surfaces (in contact with the rotating wheel and exposed to the air) were characterized with Optical Microscopy and AFM, revealing that the surface exposed to the air is duller (due to a long-range heterogeneity) than the opposite surface. Also the XPS chemical composition revealed many differences between them both on the corrosion extension and on the total relative amounts of tin and bismuth. For instance, for the specific case of an alloy with a composition Bi-4 wt % Sn, the XPS atomic ratios Sn/Bi are 1.1 and 3.7 for the surface in contact with the rotating wheel and for the one exposed to air, respectively, showing, additionally, that a large segregation of tin at the surface exists (nominal ratio should be 0.073). This segregation was interpreted as the result of the electrochemical process yielding the corrosion products.


Alloy Digest ◽  
2020 ◽  
Vol 69 (11) ◽  

Abstract Meehanite GB300 is a pearlitic gray cast iron that has a minimum tensile strength of 300 MPa (44 ksi), when determined on test pieces machined from separately cast, 30 mm (1.2 in.) diameter test bars. This grade exhibits high strength while still maintaining good thermal conductivity and good machinability. It is generally used for applications where the thermal conductivity requirements preclude the use of other higher-strength materials, such as spheroidal graphite cast irons, which have inferior thermal properties. This datasheet provides information on physical properties, hardness, tensile properties, and compressive strength as well as fatigue. It also includes information on low and high temperature performance as well as heat treating, machining, and joining. Filing Code: CI-75. Producer or source: Meehanite Metal Corporation.


2013 ◽  
Vol 738-739 ◽  
pp. 436-440 ◽  
Author(s):  
Krystian Prusik ◽  
Katarzyna Bałdys ◽  
Danuta Stróż ◽  
Tomasz Goryczka ◽  
Józef Lelątko

In present paper two ribbons of the Ni44Co6Mn36In14 (at.%) were prepared under different melt-spinning technique conditions. Microstructure of the ribbons was studied by scanning electron microscopy (SEM). Depending on the liquid ejection overpressure two types of ribbons microstructures were observed. Ribbon T1 for which ejection overpressure was 1.5 bar showed typical melt-spun ribbon microstructure consisting of a top layer of small equi-axial grains and columnar grains below. For T2 ribbon (ejection overpressure 0.2 bar) only a small fraction of the columnar grains were observed. Structure analysis of the ribbons performed by XRD showed that at room temperature both ribbons have B2 parent phase superstructure. No gamma phase precipitates were observed. In order to determine the orientation of the grains the EBSD technique was applied.


Alloy Digest ◽  
2021 ◽  
Vol 70 (9) ◽  

Abstract ISO 185/JL/350 is a higher-tensile-strength gray cast iron that has a pearlitic matrix, and a tensile strength of 350–450 MPa (51–65 ksi), when determined on test pieces machined from separately cast, 30 mm (1.2 in.) diameter test bars. It provides a combination of high strength while still maintaining good thermal conductivity compared with other types of cast iron. This grade approaches the maximum tensile strength attainable in gray cast iron. Applications therefore tend to be confined to those where thermal conductivity requirements in service preclude the use of one of the other higher-strength materials such as spheroidal graphite cast irons, which have inferior thermal properties. This datasheet provides information on composition, physical properties, and tensile properties. It also includes information on wear resistance as well as casting and heat treating. Filing Code: CI-85. Producer or source: International Organization for Standardization.


Nanoscale ◽  
2018 ◽  
Vol 10 (4) ◽  
pp. 1970-1977 ◽  
Author(s):  
Saravanan Muthiah ◽  
R. C. Singh ◽  
B. D. Pathak ◽  
Piyush Kumar Avasthi ◽  
Rishikesh Kumar ◽  
...  

An unprecedented ZT ∼ 0.82 realized in spark plasma sintered Al-doped MnSi1.73 HMS, melt spun at high cooling rates.


1988 ◽  
Vol 134 ◽  
Author(s):  
Satish Kumar ◽  
T. E. Helminiak

ABSTRACTSignificant research efforts have been carried out to improve the tensile modulus and tensile strength of high performance carbon and polymeric fibers. Experimental polymeric fibers (ordered polymer fibers) have been prepared with moduli >50 MPSI and tensile strength approaching one MPSI. However, the benefits of the above improvements in tensile properties for aerospace applications are limited because composites of these fibers have low axial compressive strength, which is a direct result of the poor axial fiber compressive strength. The poor axial fiber compressive strength has usually been attributed to the microfibrillar/fibrillar buckling. However, questions concerning the intrinsic limitations at the molecular level and the effects of intermolecular interactions are also considered important. Better understanding of these aspects will help in determining the theoretically achievable compressive strength and may aid in the development of higher compressive strength high performance fibers. These and other issues related to the compressive strength of high performance polymeric and carbon fibers are discussed in this paper.


1992 ◽  
Vol 275 ◽  
Author(s):  
T. J. Folkerts ◽  
S. I. Yoo ◽  
Youwen Xu ◽  
M. J. Kramer ◽  
K. W. Dennis ◽  
...  

ABSTRACTUsing a novel melt-spinning technique, we have produced highly disordered NdBa2Cu3O7−x and GdBa2Cu3Oy−x materials. Samples which were melt-spun in an O2 environment consist of nanocrystals with the tetragonal REBa2Cu3O7−x structure: samples which were processed in an N2 environment consist of an amorphous matrix with small amounts of crystalline BaCu2O2, as shown by x-ray diffraction and electron microscopy. High temperature XRD studies indicate that the BaCu2O2 is eliminated during heating to 500°C in O2 and that the REBa2Cu3O7−x Phase recrystallizes directly from the amorphous matrix at temperatures below 800°C. Preliminary magnetization measurements show that higher temperature heat treatments are needed to restore superconductivity.


2006 ◽  
Vol 378-380 ◽  
pp. 738-739 ◽  
Author(s):  
Marián Reiffers ◽  
Bogdan Idzikowski ◽  
Josef Šebek ◽  
Eva Šantavá ◽  
Sergej Ilkovič ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Xuan Truong Nguyen ◽  
Hong Ky Vu ◽  
Hung Manh Do ◽  
Van Khanh Nguyen ◽  
Van Vuong Nguyen

The ribbons Nd2Fe14B/Fe-Co were prepared with the nominal composition Nd16Fe76B8/40% wt. Fe65Co35by the conventional and the developed magnetic field-assisted melt-spinning (MFMS) techniques. Both ribbons are nanocomposites with the smooth single-phase-like magnetization loops. The 0.32 T magnetic field perpendicular to the wheel surface and assisting the melt-spinning process reduces the grain size inside the ribbon, increases the texture of the ribbon, improves the exchange coupling, and, in sequence, increases the energy product(BH)maxof the isotropic powdered samples of MFMS ribbon in ~9% by comparison with that of the ribbon melt-spun conventionally. The grain size reduction effect caused by the assisted magnetic field has also been described quantitatively. The MFMS technique seems to be promising for producing high-performance nanocomposite ribbons.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5738
Author(s):  
Nidal Alshwawreh ◽  
Baider Alhamarneh ◽  
Qutaiba Altwarah ◽  
Shamel Quandour ◽  
Shadi Barghout ◽  
...  

Thermal processing of all aluminum alloy conductors (AAAC) is an important step that is performed to enhance the electrical and mechanical properties after the drawing process. In these 6xxx alloys, mechanical strength and electrical conductivity are normally two mutually exclusive properties. With the increased demand for high performance power conductors, it is important to understand and control microstructural evolution processes (e.g., recovery and the formation of nanoscale precipitates) in these alloys for better electrical and mechanical characteristics. In this study, heat treatment was performed on as-drawn 6201 AAAC wire conductors. The variations in tensile strength and electrical resistivity were quantitatively studied as a function of both the treatment temperature and holding time. Two wire diameters commonly used in the manufacturing of medium and high voltage power cables were used: 1.7 mm and 3.5 mm. From the obtained data, significant changes in the electrical resistivity and tensile strength were observed with increasing the treatment time. For both wire diameters, it was observed that the correlation between strength and resistivity can be described by a simple exponential relationship. This link could be useful in predicting mechanical strength by monitoring electrical resistivity variations during industrial heat treatment of AAAC wire conductors.


Sign in / Sign up

Export Citation Format

Share Document