Preparation of Rubber Filler by Spent Activated Carbon

2013 ◽  
Vol 743-744 ◽  
pp. 789-796
Author(s):  
Li Mei Wu ◽  
Xiao Yu Wang ◽  
Li Bing Liao ◽  
Guo Cheng Lv

In this paper, the spent Activated Carbon (AC) which came from caramel plant was regenerated by the method of microorganism and chemistry. The optimal regeneration method was the combination of microorganism regeneration and NaOH regeneration. The optimal regeneration condition was treated by microorganism in 60 min at temperature of 35 °C and in NaOH (dosage was 6%). The optimal ultrafine grinding time was 5 h at 1200 rpm by adding 5 Triethanolamine, the effect of ultrafine grinding was better and the minimal size distribution was D90 3.82µm, D50 1.62 µm. the study ofAC surface modification was explored while combining the similar characteristics of AC and Carbon Black in its structure and composition. The possibility of reusing the spent AC was studied and the mechanical performance of rubber with modified AC was 43~44% higher than that of unmodified AC. The modified AC was characterized by Scanning electron microscope (SEM).

1980 ◽  
Vol 59 (2) ◽  
pp. 124-128 ◽  
Author(s):  
Y. Galindo ◽  
K. McLachlan ◽  
Z. Kasloff

A silver-plating technique was developed in an effort to produce good mechanical bonding characteristics between stainless steelpins and amalgam. Metallographic microscope and scanning electron microscope (SEM) studies were made to assess the presence, or otherwise, of such a bond between (a) the silver layer plating and the surface of the stainless steel pins, and (b) and silver plating and the amalgam. Unplated stainless steel and sterling silver pins were used as a control and as a comparison, respectively. A "rubbing" technique of condensation was devised to closely adapt amalgam to the pins. It is concluded that there is strong evidence for the existence of a good bond between the plated pins and amalgam. The mechanical performance of the bond is discussed elsewhere. 1.


2019 ◽  
Vol 2 (1) ◽  
pp. 9-13
Author(s):  
Ni Made Dwidiani ◽  
Putu Wijaya Sunu ◽  
Gusti Ngurah Nitya Santhiarsa

This work studies the use of red chilli tree (capsicum anuumm L) waste as material of activated carbon and examines the morphological structure and elemental composition of the activated chili trees. The morphological structure was measured at TekMIRA (Pusat Penelitian dan Pengembangan Teknologi Mineral dan Batubara, Bandung) by using the scanning electron microscope (SEM), and the composition of the elements of carbon, hydrogen, nitrogen and ash is determined by the ultimate testing analysis with the ASTM D5373 standard. In the testing procedure, activated carbon is made from red chili tree waste by dehydration with a temperature of 2000 C for 1 hour and carbonized with a temperature of 3750 C for 1 hour. Then, the chemical activation (NaOH) is made in variation of concentration of 1%, 3%, and 5% with soaked time 24 hours, and dried at 2000 C for one hour. The carbonization at a concentration of 1% (NaOH) gave the best result on activated carbon from red chili trees.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Youyuan Wang ◽  
Kun Xiao ◽  
Can Wang ◽  
Lijun Yang ◽  
Feipeng Wang

This paper focuses on the space charge characteristics in TiO2/cross-linked polyethylene (XLPE) nanocomposites; the unmodified and modified by dimethyloctylsilane (MDOS) TiO2 nanoparticles were added to XLPE matrix with different mass concentrations (1 wt%, 3 wt%, and 5 wt%). The scanning electron microscope (SEM) showed that the MDOS coupling agent could improve the compatibility between TiO2 nanoparticles and XLPE matrix to some extent and reduce the agglomeration of TiO2 nanoparticles compared with unmodified TiO2 nanoparticles; the volume resistivity testing indicated that the volume resistivity of TiO2/XLPE nanocomposites was higher than Pure-XLPE and increased with the increase of filling concentrations. According to the pulsed electroacoustic (PEA) measurements, it was concluded that the space charge accumulation was suppressed by filling TiO2 nanoparticles and the distribution of electric field in samples was improved greatly. In addition, it was found that the injection of homocharge was more obvious in MDOS-TiO2/XLPE than that in UN-TiO2/XLPE and the homocharge injection decreased with the increase of filling concentration.


Catalysts ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 436
Author(s):  
Xiao-Chong Peng ◽  
Shan-Shan Gong ◽  
De-Yun Zeng ◽  
Shu-Wang Duo ◽  
Qi Sun

A highly efficient method for parallel synthesis of a diversity of 1,2-disubstituted benzimidazoles from N-substituted phenylenediamines and aldehydes has been developed by using 10 mol% HfCl4 on activated carbon (HfCl4/C) as the catalyst. The newly reported HfCl4/C catalyst not only mediated fast and clean formation of benzimidazoles but also could be easily removed from the reaction solution and reused up to eight times. Scanning electron microscope (SEM) and thermal desorption studies showed that activated carbon could reversibly adsorb and release Hf(IV) in ethanol upon cooling and heating, thereby serving as a thermal-controlled solid support.


2014 ◽  
Vol 625 ◽  
pp. 106-109 ◽  
Author(s):  
Maimoon Sattar ◽  
Fareeda Hayeeye ◽  
Watchanida Chinpa ◽  
Orawan Sirichote

Polysulfone/Activated Carbon (PSF/AC) composites in bead form were prepared for Rhodamine B sorption. The scanning electron microscope (SEM) shows that pure PSF bead is smooth surface while PSF/AC bead presents the pore distribution. FT-IR spectra indicate the existence of AC on the PSF/AC bead surface. Under adsorption test of Rhodamine B, it was found that an increase in the AC content in PSF solution results in an increase in the percentages of dye adsorption from 1.38 % to 71.56% for pure PSF bead and PSF/AC added with 4 wt% of AC, respectively.


Author(s):  
B. F. Luan ◽  
L. Q. Yang ◽  
T. G. Wei ◽  
K. L. Murty ◽  
C. S. Long ◽  
...  

To investigate the effects of Mo and Bi on mechanical properties of a Zr-Fe-Cr alloy at room temperature, seven Zr-Fe-Cr-Mo-Bi alloys with different compositions were designed. They were subjected to a series of rolling processes and heat treatments, and then sampled to measure mechanical properties by hardness and tensile test and to characterize microstructures by scanning electron microscope (SEM) and electron channel contrast (ECC) technique. Results indicated that among them two types of Zr-Fe-Cr-Mo-Bi alloys achieve the designed goals on mechanical properties and have the following advantages: (i) the hardness of the alloys, up to 334HV after annealing, is 40% higher than traditional Zr-4. (ii) The yield strength (YS) and ultimate tensile strength (UTS) of the alloys are 526 MP a and 889 MP a after hot rolling and annealing, markedly higher than the traditional Zr alloy. (iii) Good plasticity of the new Zr-Fe-Cr-Mo-Bi alloy is obtained with about 40% elongation, which is greatly higher than the Zr-Fe-Cr-Mo alloy thanks to the addition of Bi offsetting the disadvantage of addition Mo. Furthermore, according to observations of the microstructure observation, the reasons of the effect of the Mo and Bi elements on the mechanical performance of Zr-Fe-Cr alloy were studied and discussed.


Abstract: The photocatalytic composite Fe doped AC/TiO2 has been prepared by sol-gel method. The prepared Fe doped AC/TiO2 composite were characterized by scanning electron microscope (SEM) and X-ray diffraction (XRD).The SEM analysis showed that Fe and TiO2 were attached to the Activated Carbon surfaces. The X-Ray Diffraction data showed that Fe doped AC/TiO2 composite mostly contained anatase phase.


2016 ◽  
Vol 1133 ◽  
pp. 175-179
Author(s):  
Azlinda Abdul Ghani ◽  
Ragunathan Santiagoo ◽  
Tunku Alisha Zanariah Tunku Ozir ◽  
Sam Sung Ting ◽  
Hanafi Ismail

Polypropylene (PP)/ recycled acrylonitrile butadiene rubber (NBRr)/ banana skin powder (BSP) composites were studied. Different BSP filer loading (5, 10, 15,20,25,30 wt. %) were prepared by using heated two roll mill at 180 °C. Then, the composites were tested for functional group using FTIR model Perkin Elmer Series 2. Field Emission Scanning Electron Microscope (VPFESEM) model Zeiss SUPRA 35VP also were using for morphological study. The effect of 3-aminopropyltrimethoxysilane (APS) as coupling agent were evaluated.The FTIR test shows different bands around 3200-3500 and 1740 cm-1 which represent the stretching of OH and C=O groups respectively. As for BSP which composed mostly of cellulose, hemicelluloses and lignin, the cellulose backbone C-OH is represent by the peaks of 1050 and 1048 cm-1 respectively. The γ-APS intense band around 1167 cm-1 and 1098 cm-1 in treated composite was assigned to the stretching of the-Si-O-Cellulose and –Si-O-Si-bond respectively. The large band around 1050 cm-1 found on BSP filler was attribute to the –Si-OH group which later this band will disappear after the surface modification. This evidenced that bonding between γ-APS treated BSP with PP/NBRr matrices. Morphological study supported this finding which BSP filler treated with γ-APS has improved the adhesion between BSP filler and PP/NBRr matrices.


2017 ◽  
Vol 896 ◽  
pp. 155-161
Author(s):  
Lei Yang ◽  
Shang Guan Ju ◽  
Hui Qing Wang ◽  
Jia An ◽  
Jun Ming Yu ◽  
...  

CeO2 desulfurization sorbent was prepared by calcination of Ce(NO3)3 ● 6H2O and the effect of regeneration conditions on its properties in SO2 atmosphere was investigated in a fixed bed reactor. The regeneration conversion and the yield of elemental sulfur for CeO2 desulfurization sorbent were tested and calculated. And the composition and the morphology of CeO2 desulfurization sorbent before and after regeneration were obtained by X-ray diffraction and scanning electron microscope. It was found that the main components of the regeneration products of Ce2O desulfurization sorbent were solid CeO2 and gaseous elemental S in SO2 atmosphere. The optimum regeneration condition of CeO2 desulfurization sorbent is that the regeneration temperature of 750 °C and the SO2 concentration of 4.25 %, under which the CeO2 desulfurization sorbent shows the higher regeneration conversion of 96 % and the yield of elemental sulfur of 68.95 wt. %.


Sign in / Sign up

Export Citation Format

Share Document