Research on Deformation Behavior of 2024 H18 Aluminum Alloy at Elevated Temperature

2013 ◽  
Vol 770 ◽  
pp. 329-334 ◽  
Author(s):  
Guo Liang Chen ◽  
Ning Wang ◽  
Ming He Chen

Uniaxial tensile deformation behavior of 2024 H18 aluminum sheet alloys was studied in the hot forming process with synchronous cooling temperature range of 300°C~475°C and in the strain rate range of 0.0005/s~0.1/s. The effects of temperature and strain rate on stress, elongation to facture were analyzed. And a constitutive model was proposed to describe the relationship of true stress-true stain by multiple linear regression analysis. It was found that the forming temperature and strain rate have great effect on the hot forming behavior of the alloys. The max stress reduced greatly with the increasing of temperature or reducing of strain rate, while the tensile elongation tended to rise first and then fall with the increasing of temperature and strain rate. The forming of 2024 H18 aluminum alloy at elevated temperature occurred with the strain hardening and dynamic softening. The constitutive model of 2024 H18 aluminum alloy agrees well with the experimental data.

2011 ◽  
Vol 66-68 ◽  
pp. 70-75 ◽  
Author(s):  
Gao Shan Ma ◽  
Song Yang Zhang ◽  
Han Ying Wang ◽  
Min Wan

Uniaxial tensile deformation behavior of 5A90 aluminium-lithium alloy sheet is investigated in the hot forming with the temperature range of 200-450°C and strain rate range of 0.3×10-3-0.2×10-1s-1. It is found that the flow stress of 5A90 Al-Li alloy in uniaxial tension increase with increasing strain rate and decrease with increasing temperature, however, the tendency of total elongation is just the reverse, and the optimum forming temperature is 400°C. The strain rate sensitivity index (m-value) remarkably increases with increasing temperature for a given strain rate. It is shown that 5A90 Al-Li alloy sheet displays the sensitivity to the strain rate at elevated temperatures. For a given strain rate, the strain hardening index (n-value) decreases with increasing temperature, whereas the n-value increases above 350°C. The constitutive equation of stress, strain and strain rate for 5A90 Al-Li alloy at any temperature is obtained by fitting the experimental data, which gave a good flow stress model for the FEM simulation of hot forming.


Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2495 ◽  
Author(s):  
Y.C. Lin ◽  
Wen-Yong Dong ◽  
Xu-Hao Zhu ◽  
Qiao Wu ◽  
Ying-Jie He

Deformation behavior and precipitation features of an Al–Cu alloy are investigated using uniaxial tensile tests at intermediate temperatures. It is found that the true stress drops with the decreased strain rate or the increased deformation temperature. The number of substructures and the degree of grain elongation decrease with the raised temperature or the decreased strain rate. At high temperatures or low strain rates, some dynamic recrystallized grains can be found. The type of precipitates is influenced by the heating process before hot tensile deformation. The content and size of precipitates increase during tensile deformation at intermediate temperatures. As the temperature increases over 200 °C, the precipitation process (Guinier Preston zone (G.P. zones)→θ′′ phase→θ′ phase) is enhanced, resulting in increased contents of θ′′ and θ′ phases. However, θ′′ and θ′ phases prefer to precipitate along the {020}Al direction, resulting in an uneven distribution of phases. Considering the flow softening degree and the excessive heterogeneous precipitation of θ′′ and θ′ phases during hot deformation, the reasonable strain rate and temperature are about 0.0003 s−1 and 150 °C, respectively.


Author(s):  
Bing Wang ◽  
Zhanqiang Liu ◽  
Qinghua Song ◽  
Yi Wan ◽  
Xiaoping Ren

Constitutive model is the most commonly used method to describe the material deformation behavior during machining process. This paper aims to investigate the material dynamic deformation during high speed machining of 7050-T7451 aluminum alloy with the aid of split Hopkinson pressure bar (SHPB) system and finite element (FE) analysis. First, the quasi static and dynamic compression behaviors of 7050-T7451 aluminum alloy are tested at different loading conditions with a wide range of strain rates (0.001 s, 4000 s, 6000 s, 8000 s, and 12,000 s) and temperatures (room temperature, 100 °C, 200 °C, 300 °C, and 400 °C). The influences of temperature on strain and strain rate hardening effects are revealed based on the flow stress behavior and microstructural alteration of tested specimens. Second, a modified Johnson–Cook (JCM) constitutive model is proposed considering the influence of temperature on strain and strain rate hardening. The prediction accuracies of Johnson–Cook (JC) and JCM constitutive models are compared, which indicates that the predicted flow stresses of JCM model agree better with the experimental results. Then the established JC and JCM models are embedded into FE analysis of orthogonal cutting for 7050-T7451 aluminum alloy. The reliabilities of two material models are evaluated with chip morphology and cutting force as assessment criteria. Finally, the material dynamic deformation behavior during high speed machining and compression test is compared. The research results can help to reveal the dynamic properties of 7050-T7451 aluminum alloy and provide mechanical foundation for FE analysis of high speed machining.


Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1074 ◽  
Author(s):  
Shao-You Zhang ◽  
Cheng Wang ◽  
Long-Qing Zhao ◽  
Pin-Kui Ma ◽  
Jia-Wang Song ◽  
...  

The high-temperature superplastic deformation behavior of rolled Mg-8Al-2Sn (AT82) and Mg-8Al-1Sn-1Zn (ATZ811) alloys were investigated in this study. During tensile deformation at 573 K, no obvious grain growth occurred in both alloys, because of the high-volume fraction of second phases located at grain boundaries. Meanwhile, texture weakening was observed, suggesting that grain boundary sliding (GBS) is the dominant superplastic deformation mechanism, which agreed well with the strain rate sensitivity (m) and the activation energy (Q) calculations. The microstructural evolution during tensile deformation manifested that there were more and larger cavities in AT82 than ATZ811 during high-temperature tensile deformation. Therefore, superior superplasticity was found in the ATZ811 alloy that presented a tensile elongation of ~510% under a strain rate of 10−3 s−1 at 573 K, in contrast to the relatively inferior elongation of ~380% for the AT82 alloy. Meanwhile, good tensile properties at ambient temperature were also obtained in ATZ811 alloy, showing the ultimate tensile strength (UTS) of ~355 MPa, yield strength (YS) of ~250 MPa and elongation of ~18%. Excellent mechanical performance at both ambient and elevated temperatures can be realized by using economical elements and conventional rolling process, which is desirable for the industrial application of Mg alloy sheets.


Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 77
Author(s):  
Xiang-Dong Jia ◽  
Yi-Ning Wang ◽  
Ying Zhou ◽  
Miao-Yan Cao

2219 aluminum alloy is a kind of high-strength Al-Cu-Mn alloy that can be strengthened by heat treatment. Its mechanical property parameters and forming properties are greatly affected by the deformation rate, temperature and strain. Taking 2219 aluminum alloy extruded bar as the research object, the Gleeble-3500 thermomechanical simulator was used to analyze the thermal compression deformation behavior of 2219 aluminum alloy under different temperatures and strain rates. The results show that the deformation behavior of 2219 aluminum alloy under high temperatures is greatly influenced by the deformation temperature and strain rate, and the flow stress is the result of high-temperature softening, strain hardening and deformation rate hardening. According to the experiment results, the Arrhenius constitutive model and the exponential constitutive model considering the influence of temperature and strain rate, respectively, were established, and the predicted results of the two constitutive models were in good agreement with the test results. On this basis, the processing map of 2219 aluminum alloy was established. Under the same strain rate condition with an increase of the deformation temperature, the power dissipation efficiency increases gradually, and the driving force of 2219 aluminum alloy to change its microstructure increases gradually. At the same deformation temperature, the lower the strain rate, the less possibility of plastic instability.


Author(s):  
Sijia Zhong ◽  
Jianfeng Shi ◽  
Jinyang Zheng

Polyethylene (PE) pipes have been applied in transportation of key energy medium such as natural gas in the past decades. The mechanical property of PE is of great importance for better design and safer application of PE pipeline system. The large deformation behavior is a key character of PE, not only for its significant strain rate sensitivity, but also for localized necking process after yielding. In this paper, a new constitutive modeling method was proposed to charaterize the rate-denpendent large deformation behavior of PE, in which the true stress is regarded as a function of true stain and true strain rate alone. Uniaxial tensile tests of PE were conducted under various cross-head speeds, and a digital camera was used to record the real-time deformation of specimens. By separating the composite effect into respective effect of local true strain and strain rate on the local true stress in the necking region, a phenomenological model for describing the rate-dependent deformation behavior under uniaxial tension was ealstablished. Model results were validated and found in good agreement with experimental data.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2652
Author(s):  
Meng Liu ◽  
Quanyi Wang ◽  
Yifan Cai ◽  
Dong Lu ◽  
Tianjian Wang ◽  
...  

Tensile deformation behavior and microstructure of nickel-base superalloy Inconel 625 are investigated under different strain rates of 5 × 10−4 s−1 and 5 × 10−5 s−1. According to the experimental results, yield strength and ultimate tensile strength of the alloy increase with the increase in strain rate in room temperature. Microstructure results indicate that the size of dimples is smaller in the tensile fracture surface at low strain rate than the high strain rate, and the number of dimples is also related to the strain rates and twins appear earlier in the specimens with higher strain rates. Apart from Hollomon and Ludwik functions, a new formula considering the variation trend of strength in different deformation stages is deduced and introduced, which fit closer to the tensile curves of the 625 alloy used in the present work at both strain rates. Furthermore, the Schmid factors of tensile samples under two strain rates are calculated and discussed. In the end, typical work hardening behavior resulting from the dislocations slip behavior under different strain rates is observed, and a shearing phenomenon of slip lines cross through the δ precipitates due to the movement of dislocations is also be note.


2017 ◽  
Vol 31 (16-19) ◽  
pp. 1744014
Author(s):  
M. Li ◽  
Q. W. Jiang

Tensile deformation behavior of ultrafine-grained (UFG) copper processed by accumulative roll-bonding (ARB) was studied under different strain rates at room temperature. It was found that the UFG copper under the strain rate of 10[Formula: see text] s[Formula: see text] led to a higher strength (higher flow stress level), flow stability (higher stress hardening rate) and fracture elongation. In the fracture surface of the sample appeared a large number of cleavage steps under the strain rate of 10[Formula: see text] s[Formula: see text], indicating a typical brittle fracture mode. When the strain rate is 10[Formula: see text] or 10[Formula: see text] s[Formula: see text], a great amount of dimples with few cleavage steps were observed, showing a transition from brittle to plastic deformation with increasing strain rate.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 252
Author(s):  
Rongchuang Chen ◽  
Shiyang Zhang ◽  
Xianlong Liu ◽  
Fei Feng

To investigate the effect of hot working parameters on the flow behavior of 300M steel under tension, hot uniaxial tensile tests were implemented under different temperatures (950 °C, 1000 °C, 1050 °C, 1100 °C, 1150 °C) and strain rates (0.01 s−1, 0.1 s−1, 1 s−1, 10 s−1). Compared with uniaxial compression, the tensile flow stress was 29.1% higher because dynamic recrystallization softening was less sufficient in the tensile stress state. The ultimate elongation of 300M steel increased with the decrease of temperature and the increase of strain rate. To eliminate the influence of sample necking on stress-strain relationship, both the stress and the strain were calibrated using the cross-sectional area of the neck zone. A constitutive model for tensile deformation was established based on the modified Arrhenius model, in which the model parameters (n, α, Q, ln(A)) were described as a function of strain. The average deviation was 6.81 MPa (6.23%), showing good accuracy of the constitutive model.


2018 ◽  
Vol 37 (9-10) ◽  
pp. 873-888 ◽  
Author(s):  
Nitin Kotkunde ◽  
Hansoge Nitin Krishnamurthy ◽  
Swadesh Kumar Singh ◽  
Gangadhar Jella

AbstractA thorough understanding of hot deformation behavior plays a vital role in determining process parameters of hot working processes. Firstly, uniaxial tensile tests have been performed in the temperature ranges of 150 °C–600 °C and strain rate ranges of 0.0001–0.01s−1 for analyzing the deformation behavior of ASS 304 and ASS 316. The phenomenological-based constitutive models namely modified Fields–Backofen (m-FB) and Khan–Huang–Liang (KHL) have been developed. The prediction capability of these models has been verified with experimental data using various statistical measures. Analysis of statistical measures revealed KHL model has good agreement with experimental flow stress data. Through the flow stresses behavior, the processing maps are established and analyzed according to the dynamic materials model (DMM). In the processing map, the variation of the efficiency of the power dissipation is plotted as a function of temperature and strain rate. The processing maps results have been validated with experimental data.


Sign in / Sign up

Export Citation Format

Share Document