Nano-Structuring of 316L Type Steel by Severe Plastic Deformation Processing Using Two-Dimensional Linear Plane Strain Machining

2014 ◽  
Vol 783-786 ◽  
pp. 2720-2725 ◽  
Author(s):  
Jorg M.K. Wiezorek ◽  
G. Facco ◽  
Y. Idell ◽  
A. Kulovits ◽  
M.R. Shankar

Using a novel plastic deformation technique, termed linear plane-strain machining, large shear strains up to ~2.3 have been imparted to 316L stainless steel at rates of up to 1700/s. Combinations of hardness and magnetic measurements, X-ray diffraction (XRD) and transmission electron microscopy (TEM) experiments were used to monitor the microstructural and mechanical property changes for the room temperature plastic deformation processing. Grain refinements to the ultra-fine grained and even the nanocrystalline size regime have been achieved without formation of significant volume fractions of strain-induced martensite. The mechanical strength enhancements in the linear plane-strain machined 316L have been attributed to grain refinement and stored strain. The suppression of martensite formation has been correlated to significant adiabatic heating of the 316L during high strain rate plastic deformation processing.

Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 244
Author(s):  
Carolina N. Keim ◽  
Jilder D. P. Serna ◽  
Daniel Acosta-Avalos ◽  
Reiner Neumann ◽  
Alex S. Silva ◽  
...  

On 5 November 2015, a large tailing deposit failed in Brazil, releasing an estimated 32.6 to 62 million m3 of iron mining tailings into the environment. Tailings from the Fundão Dam flowed down through the Gualaxo do Norte and Carmo riverbeds and floodplains and reached the Doce River. Since then, bottom sediments have become enriched in Fe(III) oxyhydroxides. Dissimilatory iron-reducing microorganisms (DIRMs) are anaerobes able to couple organic matter oxidation to Fe(III) reduction, producing CO2 and Fe(II), which can precipitate as magnetite (FeO·Fe2O3) and other Fe(II) minerals. In this work, we investigated the presence of DIRMs in affected and non-affected bottom sediments of the Gualaxo do Norte and Doce Rivers. The increase in Fe(II) concentrations in culture media over time indicated the presence of Fe(III)-reducing microorganisms in all sediments tested, which could reduce Fe(III) from both tailings and amorphous ferric oxyhydroxide. Half of our enrichment cultures converted amorphous Fe(III) oxyhydroxide into magnetite, which was characterized by X-ray diffraction, transmission electron microscopy, and magnetic measurements. The conversion of solid Fe(III) phases to soluble Fe(II) and/or magnetite is characteristic of DIRM cultures. The presence of DIRMs in the sediments of the Doce River and tributaries points to the possibility of reductive dissolution of goethite (α-FeOOH) and/or hematite (α-Fe2O3) from sediments, along with the consumption of organics, release of trace elements, and impairment of water quality.


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 800
Author(s):  
Vladimír Girman ◽  
Maksym Lisnichuk ◽  
Daria Yudina ◽  
Miloš Matvija ◽  
Pavol Sovák ◽  
...  

In the present study, the effect of wet mechanical alloying (MA) on the glass-forming ability (GFA) of Co43Fe20X5.5B31.5 (X = Ta, W) alloys was studied. The structural evolution during MA was investigated using high-energy X-ray diffraction, X-ray absorption spectroscopy, high-resolution transmission electron microscopy and magnetic measurements. Pair distribution function and extended X-ray absorption fine structure spectroscopy were used to characterize local atomic structure at various stages of MA. Besides structural changes, the magnetic properties of both compositions were investigated employing a vibrating sample magnetometer and thermomagnetic measurements. It was shown that using hexane as a process control agent during wet MA resulted in the formation of fully amorphous Co-Fe-Ta-B powder material at a shorter milling time (100 h) as compared to dry MA. It has also been shown that substituting Ta with W effectively suppresses GFA. After 100 h of MA of Co-Fe-W-B mixture, a nanocomposite material consisting of amorphous and nanocrystalline bcc-W phase was synthesized.


2007 ◽  
Vol 130 ◽  
pp. 171-174 ◽  
Author(s):  
Z. Stokłosa ◽  
G. Badura ◽  
P. Kwapuliński ◽  
Józef Rasek ◽  
G. Haneczok ◽  
...  

The crystallization and optimization of magnetic properties effects in FeXSiB (X=Cu, V, Co, Zr, Nb) amorphous alloys were studied by applying X-ray diffraction methods, high resolution transmission electron microscopy (HRTEM), resistometric and magnetic measurements. The temperatures of the first and the second stage of crystallization, the 1h optimization annealing temperature and the Curie temperature were determined for different amorphous alloys. Activation energies of crystallization process were obtained by applying the Kissinger method. The influence of alloy additions on optimization effect and crystallization processes was carefully examined.


2016 ◽  
Vol 09 (03) ◽  
pp. 1650039 ◽  
Author(s):  
Jingyuan Piao ◽  
Li-Ting Tseng ◽  
Kiyonori Suzuki ◽  
Jiabao Yi

Na-doped ZnO nanorods have been fabricated through a hydrothermal method. X-ray diffraction (XRD) and transmission electron microscopy (TEM) analyses indicate that the d spacing of ZnO increases with increasing doping concentration, suggesting the effective incorporation of dopant Na in the samples. Electron paramagnetic resonance (EPR) measurements indicate that there are shallow donors in pure ZnO samples and the shallow donors are strongly prohibited by Na doping. In addition, the resonance at g = 2.005 suggests the formation of Zn vacancies. Magnetic measurements indicate that pure ZnO is paramagnetic and Na doping leads to ferromagnetism at room temperature. Moreover, 0.5% Na-doped ZnO nanorods exhibits the largest saturation magnetization.


1997 ◽  
Vol 485 ◽  
Author(s):  
G. M. Riker ◽  
M. M. Al-Jassim ◽  
F. S. Hasoon

AbstractWe have investigated CdS thin films as possible passivating window layers for InP. The films were deposited on single crystal InP by chemical bath deposition (CBD). The film thickness, as optically determined by ellipsometry, was varied from 500 to 840Å. The film morphology was investigated by high resolution scanning electron microscopy (SEM), whereas the film microstructure was studied by X-ray diffraction (XRD) and cross-sectional transmission electron microscopy (TEM). Most of the films were fine-grained polycrystalline CdS, with some deposition conditions resulting in epitaxial growth. Cross-sectional TEM examination revealed the presence of interface contaminants. The effect of such contaminants on the film morphology and microstructure was studied, and various approaches for InP surface cleaning/treatment were investigated. The epitaxial films were determined to be hexagonal on both the (111) and (100) InP substrates; however, they were heavily faulted.


2007 ◽  
Vol 1056 ◽  
Author(s):  
Jafar F. Al-Sharab ◽  
Rajendra Sadangi ◽  
Vijay Shukla ◽  
Bernard Kear

ABSTRACTPolycrystalline Y2O3 is the material of choice for IR windows since it has excellent optical properties in the visible, and near infra-red band. However, current processing methods yield polycrystalline Y2O3 with large grain size (> 100 μm), which limits the hardness and erosion resistance attainable. One way to improve strength is to develop an ultra-fine grained material with acceptable optical transmission properties. To realize a fine-grained ceramic, one approach is to develop a composite structure, in which one phase inhibits the growth of the other phase during processing. In this study, Y2O3-MgO nanocomposite with various MgO content (20, 50 and 80 mol%) were synthesized using plasma spray method. Extensive characterization techniques including x-ray diffraction, scanning electron microscopy (SEM), Transmission electron microscopy (TEM) and Energy Dispersive spectrometry (EDS) were employed to study the synthesized powder as well as the consolidated sample. Transmission Electron Microscopy, as well as EDS chemical mapping, revealed that the consolidated sample have bi-continuous MgO-Y2O3 nanostructure with an average grain size of 200 nm.


2008 ◽  
Vol 375-376 ◽  
pp. 21-25 ◽  
Author(s):  
Wen Jun Deng ◽  
Wei Xia ◽  
Yong Li ◽  
Zhen Ping Wan ◽  
Yong Tang

Microstructure of machined copper chips at very low velocity was characterized by transmission electron microscopy. The structure of the machined chip produced by reasonable combinations of machining parameters is virtually entirely occupied by isolated equiaxed submicron grains of 100~300nm in size with high-angle boundaries. A finite element model was developed to study large plastic deformation in plain orthogonal machining copper. The numerical results show most of the grain refinement associated with the formation of ultra-fine grained chip may be attributed to the large shear strain imposed in the deformation zone. It is feasible to take machining process as a method of preparing ultra-fine grained materials. But the optimal design of the machining process requires a precise and quantitative understanding of the mechanics of deformation-induced subgrain microstructure.


Open Physics ◽  
2010 ◽  
Vol 8 (4) ◽  
Author(s):  
Lidia Rednic ◽  
Iosif Deac ◽  
Eugen Dorolti ◽  
Marin Coldea ◽  
Vasile Rednic ◽  
...  

AbstractX-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), Transmission Electron Microscopy (TEM) and magnetic measurements as a function of applied magnetic field and temperature for In1−x MnxSb (0.05≤x≤0.2) system are reported. Magnetic measurements performed at high and small magnetic field in ZFC and FC indicate the coexistence of ferromagnetic In1−x MnxSb solid solution and two types of magnetic cluster: ferromagnetic MnSb and ferrimagnetic Mn2Sb. XPS valence band and Mn 2p core level spectra have confirmed the presence of MnSb and Mn2Sb phases. TEM images show some manganese antimonide phase microinclusions with dimension between (30–40) nm.


Sign in / Sign up

Export Citation Format

Share Document