Dissimilar-Metal Joining Using Several Types of High-Speed Solid-State Welding Methods

2014 ◽  
Vol 794-796 ◽  
pp. 357-364
Author(s):  
Shinji Kumai

Solid-state welding is useful to join dissimilar metal couples, in particular, with a large difference in physical and mechanical properties. However, conventional solid-state welding methods such as diffusion welding and roll bonding are not necessarily applicable to all metal combinations. In addition, they are time-consuming. In the present study, various dissimilar metal joints (e.g. Al/Fe, Al/Cu, Al/Ni, A2024/A5052, A6022/steel, A6022/Plated steel, A2024/AZ80) were fabricated by using several types of high-speed solid-state welding methods; friction stir spot welding, advanced stud welding and impact welding. The strength and characteristic interfacial morphology of the joints were investigated, and each joining mechanism is discussed. In particular, for the impact welding, both experimental and numerical analyses were performed. Two metal sheets were obliquely collided at a very high speed and joined by magnetic pressure or explosive force. Smoothed Particle Hydrodynamics (SPH) method was used to simulate the impact welding process. The emission of metal jet and the evolution of characteristic wavy interface at the joint interface could be clearly visualized. The effects of collision angle, collision velocity and difference in density of the metals on the wave morphology were revealed.

2015 ◽  
Vol 1119 ◽  
pp. 597-600
Author(s):  
Hyun Ho Jung ◽  
Ye Rim Lee ◽  
Jong Hoon Yoon ◽  
Joon Tae Yoo ◽  
Kyung Ju Min ◽  
...  

Since solid state welded joint is formed from an intimate contact between two metals at temperatures below the melting point of the base materials, the structural integrity of welding depends on time, temperature, and pressure. This paper provides some of examples of friction stir welding and diffusion welding process for aerospace components. Friction stir welding process of AA2195 was developed in order to study possible application for a large fuel tank. Massive diffusion welding of multiple titanium sheets was performed and successful results were obtained. Diffusion welding of dissimilar metals of copper and stainless steel was necessary to manufacture a scaled combustion chamber. Diffusion welding of copper and steel was performed and it is shown that the optimum condition of diffusion welding is 7MPa at 890°C, for one hour. It is shown that solid state welding processes can be successfully applied to fabricate lightweight aerospace parts.


2021 ◽  
Vol 66 (2) ◽  
pp. 75-82
Author(s):  
Tünde Kovácsa ◽  
Annamária Vladárb ◽  
Peter Pinkec ◽  
Hassanen Jaberd

The dissimilar metal welding always challenges. The different alloys have different physical and mechanical properties. In the case of the electronic component of the car, it needs to establish a joint between dissimilar metals. The useful metals are for this application are copper and aluminium. Even that has good conductivity, corrosion resistance and formability. By fusion welding technologies these thin metal workpiece joining is not a simple technology. To use a solid state welding technology can be a suitable solution to establish a cohesion joint in case of this task. It well-known much suitable technologies, even that all of them has advantages and disadvantages. The choice of solid-state technology is the ultrasonic welding process. In the case of this process, we use pressure and high-frequency vibration for welding. Besides this process, the friction and vibration generated heat is lower than the metal melting temperature. The base of this technology is the ultrasound-assisted high-level formability. The optimization of this dissimilar joining technology parameters needs many pre-welding and testing process. In this work, we wanted to introduce this empirical optimization process.


Author(s):  
Wayne Cai ◽  
Glenn Daehn ◽  
Anupam Vivek ◽  
Jingjing Li ◽  
Haris Khan ◽  
...  

This paper aims at providing a state-of-the-art review of an increasingly important class of joining technologies called solid-state welding. Among many other advantages such as low heat input, solid-state processes are particularly suitable for dissimilar materials joining. In this paper, major solid-state joining technologies such as the linear and rotary friction welding, friction stir welding, ultrasonic welding, impact welding, are reviewed, as well as diffusion and roll bonding. For each technology, the joining process is first depicted, followed by the process characterization, modeling and simulation, monitoring/diagnostics/NDE, and ended with concluding remarks. A discussion section is provided after reviewing all the technologies on the common critical factors that affect the solid-state processes such as the joining mechanisms, chemical and materials compatibility, surface properties, and process conditions. Finally, the future outlook is presented.


2010 ◽  
Vol 654-656 ◽  
pp. 596-601 ◽  
Author(s):  
Shinji Kumai ◽  
Mitsuhiro Watanabe ◽  
Keyan Feng

Both similar- and dissimilar metal joints, which are difficult to be welded by using ordinary fusion welding methods, were successfully obtained by using several advanced high-speed solid-state joining methods. (1) Al/Al, Cu/Cu, Al/Fe(Steel), Al/Cu, Al/Ni, Cu/Ni and Al/Bulk metallic glass lap joints were magnetic pulse welded by means of mutual high-speed oblique collision of metal sheets at a high speed of about 500m/s. (2) 2xxx aluminum alloy pins were stud-welded to 5xxx alloy aluminum sheets and several kinds of plated steel sheets at a high speed by using a specially designed discharge circuit. The welding was achieved within a few milliseconds without producing any weld marks on the back surface of the plate. (3) 6022 aluminum alloy sheets were friction stir spot welded to steel sheets and various kinds of galvanized and aluminum-plated steel sheets. The welding was achieved within a few seconds. For those joints, joint strength and characteristic joint interface morphology were investigated.


2011 ◽  
Vol 264-265 ◽  
pp. 1737-1745 ◽  
Author(s):  
M.R. Soltan Mohammadi ◽  
S.F. Kashani Bozorg

Dissimilar joints between CP-Ti and 304stainless steel were produced using diffusion welding technique in the temperature range of 800-950 °C, under a uniaxial pressure of 7 MPa in argon atmosphere. Mechanical assessment of the joints was carried out employing shear testing. The shear strength was found to be a function of joint surface area and volume fraction of brittle intermetallic phases such as σ, FeTi, and Fe2Ti which were detected by scanning electron microscopy and energy dispersive spectroscopy. Increasing the temperature and time of the diffusion welding process increased joint surface area and accelerated elemental diffusion across the joint interface which enhanced the shear strength value. However, as the volume fraction of the brittle intermetallic phases and Kirkendall voids increased at higher temperature and time, the bond shear strength decreased. Optimum shear strength was found to be 168 MPa which related to the joint produced at temperature and time of 900°C and 30 min, respectively.


2013 ◽  
Vol 58 (2) ◽  
pp. 595-599 ◽  
Author(s):  
P. Lacki ◽  
Z. Kucharczyk ◽  
R.E. Śliwa ◽  
T. Gałaczyński

Friction stir welding (FSW) is one of the youngest methods of metal welding. Metals and its alloys are joined in a solid state at temperature lower than melting points of the joined materials. The method is constantly developed and friction stir spot welding (FSSW) is one of its varieties. In the friction stir spot welding process a specially designed tool is brought into rotation and plunged, straight down, in the joined materials. Heat is generated as a result of friction between the tool and materials, and plastic deformation of the joined materials. Softening (plastic zone) of the joined materials occurs. Simultaneously the materials are stirred. After removal of the tool, cooling down the stirred materials create a solid state joint. Numerical simulation of the process was carried out with the ADINA System based on the finite element method (FEM). The problem was considered as an axisymmetric one. A thermal and plastic material model was assumed for Al 6061-T6. Frictional heat was generated on the contact surfaces between the tool and the joined elements. The model of Coulomb friction, in which the friction coefficient depends on the temperature, was used. An influence of the tool geometry on heat generation in the welded materials was analysed. The calculations were carried out for different radiuses of the tool stem and for different angles of the abutment. Temperature distributions in the welded materials as a function of the process duration assuming a constant value of rotational tool speed and the speed of tool plunge were determined. Additionally, the effect of the stem radius and its height on the maximum temperature was analysed. The influence of tool geometry parameters on the temperature field and the temperature gradient in the welded materials was shown. It is important regarding the final result of FSSW.


Author(s):  
Kaifeng Wang ◽  
Piyush Upadhyay ◽  
Yuxiang Wang ◽  
Jingjing Li ◽  
Xin Sun ◽  
...  

Friction stir scribe (FSS) welding as a recent derivative of friction stir welding (FSW) has been successfully used to fabricate a linear joint between automotive Al and steel sheets. It has been established that FSS welding generates a hook-like structure at the bimaterial interface. Beyond the hook-like structure, there is a lack of fundamental understanding on the bond formation mechanism during this newly developed FSS welding process. In this paper, the microstructures and phases at the joint interface of FSS welded Al to ultra-high-strength steel were studied using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It was found that both mechanical interlocking and interfacial bonding occurred simultaneously during the FSS welding process. Based on SEM observations, a higher diffusion driving force in the advancing side was found compared to the retreating side and the scribe swept zone, and thermally activated diffusion was the primary driving force for the interfacial bond formation in the scribe swept region. The TEM energy-dispersive X-ray spectroscopy (EDXS) revealed that a thin intermetallic compound (IMC) layer was formed through the interface, where the thickness of this layer gradually decreased from the advancing side to the retreating side owing to different material plastic deformation and heat generations. In addition, the diffraction pattern (or one-dimensional fast Fourier transform (FFT) pattern) revealed that the IMC layer was composed of Fe2Al5 or Fe4Al13 with a Fe/Al solid solution depending on the weld regions.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Kuan-Jen Chen ◽  
Fei-Yi Hung ◽  
Truan-Sheng Lui ◽  
Yong-Ren Shih

The friction stir welding process (friction stir welding/processing, FSW/FSP) has wear problems related to stirring tools. In this study, the plasma transfer arc (PTA) method was used with stellite 1 powders (Co-based) to coat on the head of a SKD61 stirring tool (SKD61-ST1) in order to investigate the wear performance and phase transformation of SKD61-ST1 after FSW. Under the same experimental parameters, the wear data were compared with the high-speed steel SKH51 (tempering material SKH51-T and annealed material SKH51-A) and tungsten-carbide cobalt (TCC). Results showed the PTA coating was a γ-Co solidification matrix with M7C3 and M23C6 carbides. After FSW, the wear resistance of SKD61-ST1 was better than that of SKH51-A and SKH51-T and lower than that of TCC. The SKD61-ST1, SKH51-A, and SKH51-T stirring tools exhibited sliding wear after FSP, where the pin and shoulder of the stirring tool formed a phase transfer layer on the surface, and the peeling of the phase transfer layer caused wear weight loss. The main phase of the phase transfer layer of the SKD61-ST1 tool was Al9Co2. The affinity and adhesion energy of the Co-Al phase was lower than that of Fe-Al phase, and the phase transfer layer of the SKD61-ST1 tool was thinner and had lower coverage, thereby increasing the wear resistance of the SKD61-ST1 stirring tools during FSW.


2016 ◽  
Vol 254 ◽  
pp. 261-266
Author(s):  
Bogdan Radu ◽  
Cosmin Codrean ◽  
Radu Cojocaru ◽  
Cristian Ciucă

Friction Stir Welding (FSW) is an innovative solid state welding process, relatively new in industry, which allow welding of two or more materials which have very different properties, particularly thermal properties as fusion temperature, thermal expansion coefficient, specific heat and thermal conduction and have a predisposition to form intermetallic brittle phases, neither one of the components to be weld reach to the melting point. Being a solid state welding process temperature field is very important for the quality of the welded joint, and a lot of researches focused on this topic. This paper presents some results in modeling and estimation of thermal field developed during FSW of dissimilar joints, using Finite Element Analysis. Numerical modeling of thermal field allows engineers to predict, in advance, the evolution of temperature and to estimate the behavior of the welded materials during the welding process. This will reduce significantly the time and number of experiments that have to be carried out, in the process of establishing a good FSW technology, as well as reducing significantly the cost of the tests.


2018 ◽  
Vol 767 ◽  
pp. 431-438 ◽  
Author(s):  
Joerg Bellmann ◽  
Joern Lueg-Althoff ◽  
Sebastian Schulze ◽  
Soeren Gies ◽  
Eckhard Beyer ◽  
...  

Magnetic pulse welding (MPW) is a promising technology to join dissimilar metals and to produce multi-material structures, e.g. to fulfill lightweight requirements. During this impact welding process, proper collision conditions between both joining partners are essential for a sound weld formation. Controlling these conditions is difficult due to a huge number of influencing and interacting factors. Many of them are related to the pulse welding setup and the material properties of the moving part, the so-called flyer. In this paper, a new measurement system is applied that takes advantage of the high velocity impact flash. The flash is a side effect of the MPW process and its intensity depends on the impact velocity of the flyer. Thus, the intensity level can be used as a welding criterion. A procedure is described that enables the user to realize a fast parameter development with only a few experiments. The minimum energy level and the optimum distance between the parts to be joined can be identified. This is of importance since a low energy input decreases the thermal and mechanical shock loading on the tool coil and thus increases its lifetime. In a second step, the axial position of the flyer in the tool coil is adjusted to ensure a proper collision angle and a circumferential weld seam.


Sign in / Sign up

Export Citation Format

Share Document