Influence of Firing Temperature on the Behavior of Clay Ceramics Incorporated with Elephant Grass Ash

2014 ◽  
Vol 798-799 ◽  
pp. 526-531 ◽  
Author(s):  
Aline Marcia Ferreira Dias da Silva ◽  
Rosane Toledo ◽  
Veronica Scarpini Candido ◽  
Sergio Neves Monteiro ◽  
Carlos Maurício Fontes Vieira ◽  
...  

The microstructural and technological properties of clay ceramic incorporated with 10 and 20 wt% of elephant grass ashes were investigated at different firing temperatures of 650, 850 and 1050oC. X-ray diffraction were used to obtain the minerals and phase compositions. The microstructure was analyzed by scanning electron microscopy. The technical properties related to water absorption, linear shrinkage and flexural rupture strength were obtained by standard test. The results showed significant changes in the microstructure and phasic composition with increasing firing temperature. A marked improvement in the water absorption, decreasing to 18% as well as increase in strength, above 5 MPa, was found at 1050°C. However, only a slight contribution might be attributed to the incorporation of elephant grass ash. Nevertheless, its use as a by-product and the associated saving in clay are relevant environmental and economical advantages.

2017 ◽  
Vol 888 ◽  
pp. 37-41
Author(s):  
Hasrul Yahya ◽  
Mohd Roslee Othman ◽  
Zainal Arifin Ahmad

Porcelain balls as grinding media are produced by firing process of clay, quartz and feldspar mixtures. This application need high technological properties such as high compressive strength and hardness, wear resistance, low water absorption and excellent chemical resistance. These properties are associated with higher firing temperatures. The porcelain balls were prepared by mixing 30 wt.% clay, 40 wt.% feldspar and 30 wt.% quartz. The samples were sintered at 1200°C, 1230°C, 1250°C, 1270°C and 1300°C for 2 hours with heating rate of 3°C/min. Both green powder and fired samples were characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF) and scanning electron microscopy (SEM).The properties of the fired samples were evaluated by compressive strength, hardness, shrinkage, water absorption, bulk density, and porosity measurement. Increasing of compressive strength, hardness and density are associated with increasing of firing temperatures. Porcelain balls PB1 and PB2 can be produced as grinding media with optimum mechanical and physical properties at firing temperature 1270°C and 1250°C, respectively.


2019 ◽  
Vol 9 (22) ◽  
pp. 4741
Author(s):  
Xuedong Zhang ◽  
Chaozhen Zheng ◽  
Sanping Liu ◽  
Yanbing Zong ◽  
Qifan Zhou ◽  
...  

Steel slag, clay, quartz, feldspar, and talc were mixed to prepare steel slag ceramics. Crystalline phase transitions, microstructures, and the main physical-mechanical properties (water absorption, linear shrinkage, and flexural strength) of steel slag ceramics for various MgO/Al2O3 ratios were investigated by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and mechanical testing. The results indicated the significant effect of the MgO/Al2O3 ratio on these properties. A decrease in the MgO/Al2O3 ratio resulted in a major crystalline phase transformation from quartz and pyroxene phases to quartz and anorthite phases. High MgO content facilitated production of pyroxene phases. High Al2O3 content favored production of anorthite phases. The water absorption of all the samples (below 0.5%) met the Chinese national standard requirements. Samples with an MgO/Al2O3 ratio of 0.6 exhibited excellent flexural strength, reaching 62.20 MPa. FactSage software was used to predict batch viscosity, which increased with decreasing MgO/Al2O3 ratios.


2014 ◽  
Vol 798-799 ◽  
pp. 509-513 ◽  
Author(s):  
Michelle Pereira Babisk ◽  
Thalissa Pizetta Altoé ◽  
Henrique Junio de Oliveira Lopes ◽  
Ulisses Soares do Prado ◽  
Monica Castoldi Borlini Gadioli ◽  
...  

The red mud is a well known insoluble residue generated in the Bayer process to benefit bauxite ores. This residue is composed of ceramic related compounds such as iron oxide, sodium aluminum silicates, carbonates, calcium aluminates and titanium dioxide. The incorporation of industrial residues in clay ceramics has been extensively investigated, not only as an environmentally correct solution but also as an economic way to save raw materials. Therefore, the present work evaluated the properties of clay ceramics incorporated with up to 40 wt% of red mud. Clay bodies with different percentages of red mud were press-molded and fired at 750, 950 and 1050°C. The evaluated technological properties were linear shrinkage, water absorption and mechanical strength. Sensible changes in such properties were found with red mud addition. In particular, the ceramic fired at 1050°C displayed favorable water absorption with red mud incorporation.


2010 ◽  
Vol 660-661 ◽  
pp. 686-691 ◽  
Author(s):  
Carlos Maurício Fontes Vieira ◽  
Sérgio Neves Monteiro

This work has for objective to evaluate the microstructural aspects and technological properties of a clayey ceramic incorporated with up to 30 wt.% of a waste generate during the steel-making process, denoted as steel slag. To determine the physical and mechanical properties such as linear shrinkage, water absorption and flexural strength, specimens were prepared by 18 MPa uniaxial pressure-molding and then fired in a laboratory furnace at 700, 900 and 1100oC. The microstructure of the compositions was evaluated by scanning electron microscopy and X-ray diffraction. The results showed that it is possible to recycle the finer particles of steel slag by incorporating into red ceramic as long as they are used in amounts not higher than 10 wt.% to avoid the increase in porosity and decrease of the mechanical strength.


2014 ◽  
Vol 775-776 ◽  
pp. 607-612
Author(s):  
Carlos Maurício Fontes Vieira ◽  
Sergio Neves Monteiro ◽  
Mariana Miranda Abreu ◽  
Aline Vieira Riter ◽  
Fernando Vernilli ◽  
...  

The blast furnace sludge is a waste generated after the washing step of the blast furnace gas. The reuse of this waste in the steelmaking process itself is quite problematic. This study aims to analyze the possibility of the incorporation of a type of blast furnace sludge, benefited by a process that uses helical separators, into red ceramic. Specimens were prepared by uniaxial pressing at 20 MPa and then fired at 750°C and 950°C. The evaluated technological properties were linear shrinkage, water absorption and flexural rupture strength. The results showed that the benefited blast furnace sludge significantly influences the evaluated properties, by impairing the linear shrinkage and the water absorption but improving the mechanical strength.


2012 ◽  
Vol 727-728 ◽  
pp. 965-970 ◽  
Author(s):  
Carlos Maurício Fontes Vieira ◽  
Sérgio Neves Monteiro

A ceramic body traditionally used to produce bricks and roofing tiles was reformulated by the addition of sand and illitic clay. The objective was to obtain a ceramic product with better technological properties. Specimens were made by uniaxial press-molding at 20 MPa and then fired at temperatures varying from 850 to 1100°C. The determined technological properties were: linear shrinkage, water absorption and flexural rupture strength. The results showed that both sand and illitic clay contribute to reduce the water absorption of the industrial clayey body. With respect to the flexural behavior, it was observed that the incorporation of sand decreased the mechanical strength. On the other hand, the illitic, incorporated in an amounts of 30 wt.% contributed to increase the mechanical strength of the clayey ceramic.


2014 ◽  
Vol 798-799 ◽  
pp. 269-274 ◽  
Author(s):  
Gustavo de Castro Xavier ◽  
Jonas Alexandre ◽  
Paulo César de Almeida Maia ◽  
Fernando Saboya Albuquerque ◽  
Leonardo Gonçalves Pedroti ◽  
...  

Clay ceramic materials exposed to a marine environment may be subjected to complete degradation due to the presence of chloride salts in the air. The exposition allows the chloride to penetrate in structural pores causing an internal expansion, which eventually split the ceramic apart. In open air, the solar radiation as well as the rain and wind contribute to accelerate the degradation process. In the present work the laboratory assisted degradation of clay ceramics incorporated with a granite residue from ornamental stone processing was evaluated by synthetic seawater aggression according to standard procedure. The amount of incorporated residues, up to 10 wt % and the ceramic firing temperature, up to 900°C, were variable conditions statistically analyzed by factorial planning. Degradation wetting-drying tests were conducted up to 6 months. The results showed that the linear shrinkage of the residue-free ceramics do not stabilize during the test period for any firing temperature. By contrast, the residue-incorporated ceramics tend to stabilize after 4 months. In addition, a decrease in water absorption and flexural strength was observed in same speciemens.


2014 ◽  
Vol 87 ◽  
pp. 162-168
Author(s):  
Paula Cipriano da Silva ◽  
Roberto de Oliveira Magnago ◽  
Camila Aparecida Araujo da Silva ◽  
Bianca de Almeida Fortes ◽  
Claudinei dos Santos

ZrO2(Y2O3)-based ceramics with coloring gradient can facilitate the development of dental prosthesis by the improvement of esthetic properties. In this work, ZrO2 powders with different particle sizes were investigated. White and yellow zirconia powders (TOSOH Corporation-Japan) were characterized by particles size distribution using nanoSight-LM20 analyzer. Furthermore, samples were characterized by X-Ray diffraction, Scanning Electron Microscopy and relative density. Compacts with two layers, one white and one yellow were uniaxially pressed at 80MPa and sintered at 1530°C-120min. The yellow-powder presented average particles size of 180±66nm, while the white-powder presented particles size of 198±73nm. After sintering, full dense ceramics with tetragonal phase were obtained. The linear shrinkage of the yellow and white-layer was 22.75% and 22.05% respectively. This difference in shrinkage is important in the machining of prostheses in ceramic CAD/CAM systems, because they lead to difficulties in adapting this customized prosthesis in patients.


2020 ◽  
Vol 70 (6) ◽  
pp. 596-602
Author(s):  
P.K. Mehta ◽  
A. Kumaraswamy ◽  
V. K. Saraswat ◽  
Praveen Kumar B.

Utilisation of propellant waste in fabrication of bricks is not only used as efficient waste disposal method but also to get better functional properties. In the present study, high energy propellant (HEP) waste additive mixed with soil and fly ash in different proportions during manufacturing of bricks has been investigated experimentally. X-ray diffraction (XRD) studies were carried out to confirm the brick formation and the effect of HEP waste. Ceramic bricks were fabricated with HEP waste additive in proper proportions i.e. 0.5 wt %, 1.0 wt %, 1.5 wt %, 2.0 wt %, 2.5 wt %, 3 wt %, 3.5 wt %, and 4 wt % and then evaluated for water absorption capability and compressive strength. Compressive strength of 6.7 N/mm2, and Water absorption of 22 % have been observed from modified fired bricks impregnated with HEM waste additive. Scanning electron microscopy (SEM) studies were carried out to analyze the effect of HEP waste additive on pore formation and distribution in the bricks. Further, the heat resulting from decomposition of propellants can cause a decrease in the energy required of baking process. The process of manufacturing of bricks with HEP waste additive is first of its kind till date.


2020 ◽  
Vol 12 (22) ◽  
pp. 9417
Author(s):  
Jucielle Veras Fernandes ◽  
Danyelle Garcia Guedes ◽  
Fabiana Pereira da Costa ◽  
Alisson Mendes Rodrigues ◽  
Gelmires de Araújo Neves ◽  
...  

In this study, we develop ceramic formulations based on quartzite and scheelite tailings collected from mining companies in the northeast of Brazil (Rio Grande do Norte State). New ceramic samples (27 wt% of kaolin, 29 wt% of plastic clay, 11 wt% of quartzite tailing, and 0–8 wt% scheelite tailing) were uniaxially pressed in two steps (20 MPa and 50 Mpa for 20 s); dried at 110 °C for 24 h; and sintered at 1150 °C, 1200 °C, and 1250 °C. The main mineralogical phases (mullite, quartz, calcite, and anorthite) of the sintered samples were identified using X-ray diffraction (XRD). After evaluation of the physical-mechanical properties (water absorption, linear shrinkage, apparent porosity, and flexural strength), it was observed that the incorporation of scheelite tailing by up to 8 wt% did not significantly alter the properties of samples sintered at all temperatures. Our results indicate that the new ceramics formulations developed have strong potentials in manufacturing sustainable materials such as ceramic tiles and porcelain stoneware.


Sign in / Sign up

Export Citation Format

Share Document