Research on the Cutting Property of Ceramic Tool Cutting Nickel Based Superalloy GH4169

2014 ◽  
Vol 800-801 ◽  
pp. 87-91
Author(s):  
Yu Bo Liu ◽  
Yong De Zhang ◽  
Can Zhao

This paper will use the Al2O3-SiCw whisker toughening ceramic tool WG300 and Si3N4-Al2O3 (Sialon) SX9 ceramic tool cutting performance test.Study on different cutting speed, ceramic cutting tool in machining nickel based high-temperature alloy tool life and tool wear mechanism, and analysis of the wear form under different cutting parameters. The test results show that: with the increase of the cutting speed, WG300 and SX9 two kinds of tool durability showed a downward trend, the value of VB is higher than that of Al2O3-SiCw whisker reinforced ceramic cutting tool flank wear of Sialon ceramic cutting tool, but its notch wear value VN is far less than Al2O3-SiCw whisker reinforced ceramic cutting tool,the main failure form of WG300 notch wear, the main failure form of SX9 for the flank wear.

2010 ◽  
Vol 26-28 ◽  
pp. 1052-1055
Author(s):  
Li Fa Han ◽  
Sheng Guan Qu

The wear characteristics and life of Al2O3/(W,Ti)C ceramic tool in turning NbCp-reinforced iron-based P/M composites was investigated. Experimental results indicate that cutting parameters have an influence on tool wear, among which cutting speed and depth of cut seem to be more prominent. The maximum flank wear rapidly increases as the increase in cutting speed and depth of cut. While, it increases gradually as the decrease in feed rate. Meanwhile, an empirical model of tool life is established, from which the influence of cutting speed and depth of cut on tool life is far greater than that of feed rate. Also from the empirical model, the preferable range of cutting parameters was obtained.


2012 ◽  
Vol 476-478 ◽  
pp. 1067-1070
Author(s):  
Xiao Bin Zhang ◽  
Xia Chang ◽  
Fu Hui Han ◽  
Wei Jiu Huang

By using ordinary lathe, carried out cutting experimental study with cylindrical turning 45# steel on TiB2 ceramic cutting tool. By using Stereo Microscopy and Scanning Electron Microscopy, recorded cutting tool surface’s friction and wear conditions. The results showed that higher cutting speed could made surface roughness decrease and surface quality better; TiB2 ceramic cutting tool’s wear mechanism was abrasive wear, aoxidation wear; wear of blade tip and main flank face were more serious.


2021 ◽  
Author(s):  
Raqibah Najwa Mudzaffar ◽  
Mohamad Faiz Izzat Bahauddin ◽  
Hanisah Manshor ◽  
Ahmad Zahirani Ahmad Azhar ◽  
Nik Akmar Rejab ◽  
...  

Abstract The zirconia toughened alumina enhanced with titania and chromia (ZTA-TiO2-Cr2O3) ceramic cutting tool is a new cutting tool that possesses good hardness and fracture toughness. However, the performance of the ZTA-TiO2-Cr2O3 cutting tool continues to remain unknown and therefore requires further study. In this research, the wearing of the ZTA-TiO2-Cr2O3 cutting tool and the surface roughness of the machined surface of stainless steel 316L was investigated. The experiments were conducted where the cutting speeds range between 314 to 455 m/min, a feed rate from 0.1 to 0.15 mm/rev, and a depth of cut of 0.2 mm. A CNC lathe machine was utilised to conduct the turning operation for the experiment. Additionally, analysis of the flank wear and crater wear was undertaken using an optical microscope, while the chipping area was observed via scanning electron microscopy (SEM). The surface roughness of the machined surface was measured via portable surface roughness. The lowest value of flank wear, crater wear and surface roughness obtained are 0.044 mm, 0.45 mm2, and 0.50 µm, respectively at the highest cutting speed of 455 m/min and the highest feed rate of 0.15 mm/rev. The chipping area became smaller with the increase of feed rate from 0.10 to 0.15 mm/rev and larger when the feed rate decrease. This was due to the reduced vibrations at the higher spindle speed resulting in a more stable cutting operation, thereby reducing the value of tool wear, surface roughness, and the chipping area.


MRS Advances ◽  
2019 ◽  
Vol 4 (55-56) ◽  
pp. 3007-3015
Author(s):  
Ricardo del Risco-Alfonso ◽  
Hector R. Siller ◽  
Roberto Pérez-Rodríguez ◽  
Arturo Molina

ABSTRACTConsidering their distinctive properties, titanium alloys are used in foremost industries, including the aeronautic, automotive and biomedical industries. The reduced machinability of titanium alloys is due to their low thermal conductivity and high plasticity behavior. In the biomedical sector, one of the most studied alloys is Ti-6Al-4V. In the case of the Ti-6Al-7Nb alloy, scarce investigations are identified, related to machinability studies. The machining of Ti-6Al-7Nb alloy requires the development of new tools with higher properties, which provide better performance. The objective of this study is to present the experimental results related to a novel ceramic cutting tool, in terms of cutting tool life and productivity, in the machining of Ti-6Al-7Nb alloy. A turning operation of a 25 mm diameter bar was performed; the cutting speed was varied in three levels. The results showed the high performance of this type of tools, from the point of view of machinability. The values of the obtained cutting forces are found in the ranges reported by the consulted literature using ceramic tools. The surface roughness values were considered appropriate, taking into account that the tool is recommended for roughing and semi-finishing operations. The most relevant results were obtained in terms of productivity, considering that the performance is 2.53 times higher than the presented in similar works.


2013 ◽  
Vol 711 ◽  
pp. 267-271 ◽  
Author(s):  
Zhi Jie Lü ◽  
Xian Chun Song ◽  
Ming Feng Ding ◽  
Yong Hui Zhou

In this paper, a type of Si3N4/TiC micro-nanocomposite ceramic tool materials were fabricated via hot pressing technique by adding Si3N4 and TiC nanoparticles. Cutting forces, temperature and wear behavior in dry machining of nodular cast iron with Si3N4/TiC micro-nanocomposite ceramic tool were investigated, in comparison with a commercial Sialon ceramic tool. Turning experiments were carried out at three different cutting speeds, which were 110, 175, and 220 m/min. Feed rate ( f ) and depth of cut (ap) were kept fixed at 0.1 mm/rev and 0.5 mm. The results show that the radial thrust force (Fy) become the largest among the three cutting force components (Fx , Fy and Fz), and Fy is the most sensitive to the changes of feed rate and depth of cut. In dry cutting of nodular cast iron, the cutting tool temperature rise rapidly with increase in cutting speed. The cutting temperature reach nearly 1000°C at the cutting speed of 220 m/min. The two types of ceramic tools have similar cutting performance, while the Si3N4/TiC micro-nanocomposite tool exhibits a better cutting performance than that of the Sialon tool. The wear rate of Si3N4/TiC micro-nanocomposite ceramic cutting tool is mainly dominated by the abrasion, while the wear rate of Sialon ceramic cutting tool is dominated by the abrasive action, and pullout of grains.


2011 ◽  
Vol 188 ◽  
pp. 319-324
Author(s):  
Hao Yang ◽  
Xi Bin Wang ◽  
Li Jing Xie ◽  
J.J. Pei ◽  
T. Wang

By dry cutting 34CrNiMo6, hard-machined material, with carbide cutting tool and ceramic cutting tool, experimental analysis was carried out in tool wear and cutting force. Cutting tool wear in the process is researched in order to obtain the cutting tool wear patterns and analyze the influencing factors. Meanwhile, it is found that the cutting force with the cutting parameters (cutting speed, cutting depth, feed) changes regularly, and then the experience formula of cutting force can be established.


2012 ◽  
Vol 500 ◽  
pp. 634-639 ◽  
Author(s):  
Bing Qiang Liu ◽  
Chuan Zhen Huang ◽  
Ai Ling Sun

Toughening mechanisms and flank wear behavior of a TiC whisker toughening Al2O3-based ceramic cutting tool composite were investigated. The results showed that the wear behavior of the tool composite was greatly influenced by the whisker toughening mechanisms, of which the toughening effects on the composite can increase with increasing cutting temperature. As a result, the tool composite could still possess enough high fracture toughness and flexure strength at high cutting temperature, which resulted in an interesting phenomenon that the wear resistance of the tool composite at higher cutting speed was higher than that of itself at lower cutting speed.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 958
Author(s):  
Francisco Javier Trujillo Vilches ◽  
Sergio Martín Béjar ◽  
Carolina Bermudo Gamboa ◽  
Manuel Herrera Fernández ◽  
Lorenzo Sevilla Hurtado

Geometrical tolerances play a very important role in the functionality and assembly of parts made of light alloys for aeronautical applications. These parts are frequently machined in dry conditions. Under these conditions, the tool wear becomes one of the most important variables that influence geometrical tolerances. In this work, the influence of tool wear on roundness, straightness and cylindricity of dry-turned UNS A97075 alloy has been analyzed. The tool wear and form deviations evolution as a function of the cutting parameters and the cutting time has been assessed. In addition, the predominant tool wear mechanisms have been checked. The experimental results revealed that the indirect adhesion wear (BUL and BUE) was the main tool-wear mechanism, with the feed being the most influential cutting parameter. The combination of high feed and low cutting speed values resulted in the highest tool wear. The analyzed form deviations showed a general trend to increase with both cutting parameters. The tool wear and the form deviations tend to increase with the cutting time only within the intermediate range of feed tested. As the main novelty, a relationship between the cutting parameters, the cutting time (and, indirectly, the tool wear) and the analyzed form deviations has been found.


Author(s):  
Alper Uysal ◽  
Erhan Altan

In this study, the slip-line field model developed for orthogonal machining with a worn cutting tool was experimentally investigated. Minimum and maximum values of five slip-line angles ( θ1, θ2, δ2, η and ψ) were calculated. The friction forces that were caused by flank wear land, chip up-curl radii and chip thicknesses were calculated by solving the model. It was specified that the friction force increased with increase in flank wear rate and uncut chip thickness and it decreased a little with increase in cutting speed and rake angle. The chip up-curl radius increased with increase in flank wear rate and it decreased with increase in uncut chip thickness. The chip thickness increased with increase in flank wear rate and uncut chip thickness. Besides, the chip thickness increased with increase in rake angle and it decreased with increase in cutting speed.


Metals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 1014 ◽  
Author(s):  
Sánchez Hernández ◽  
Trujillo Vilches ◽  
Bermudo Gamboa ◽  
Sevilla Hurtado

In this work, the analysis of the cutting speed and feed rate influence on tool wear and cutting forces in Ti6Al4V alloy dry machining is presented. The study has been focused on the machining in a transient state. The tool wear mechanisms, tool wear intensity and cutting forces evolution have been analyzed as a function of the cutting parameters. Experimental results show that the main cutting force amplitude exhibits a general trend to increase with both cutting parameters. Crater wear was more evident at high cutting speeds, whereas flank wear was present on the whole interval of the cutting parameters analyzed. Furthermore, the cutting speed shows a slightly higher influence on crater wear and the feed rate shows a higher influence on flank wear. Finally, several experimental parametric models have been obtained. These models allow predicting the evolution of crater and flank tool wear, as well as the cutting forces, as a function of the cutting parameters. Additionally, a model that allows monitoring the tool wear on the machining transient state as a function of the main cutting force amplitude has been developed.


Sign in / Sign up

Export Citation Format

Share Document