Preparation, Microstructure and Properties of ZrO2 Gradient Porous Ceramics by Freeze-Casting Process

2015 ◽  
Vol 816 ◽  
pp. 226-230 ◽  
Author(s):  
Tao Tao Ai

The ZrO2gradient porous ceramics were prepared by a novel freeze-casting process. The porous structure of the ZrO2ceramics was investigated by scanning electron microscopy (SEM). And the porosity and compressive strength were also measured. Experimental results indicated that the porous structure of the specimens was remarkably affected by the sintering temperature. The dendritic pores were obtained after sintered at 1300 °C. The porosity and compressive strength of the specimen were 56.79% and 4.37 MPa, respectively. As the sintering temperature reached to 1500 °C, a lamellar structure was obtained on the cross-section of the specimen. Meanwhile, the porosity decreased to 26.77% and the compressive strength increased to 8.26 MPa. The ceramics can be divided subsequently into three distinctive zones along the solidification direction, i.e. lamellar zone, transition zone and cellular zone.

2012 ◽  
Vol 476-478 ◽  
pp. 1031-1035
Author(s):  
Wei Min Liu ◽  
Xing Ai ◽  
Jun Zhao ◽  
Yong Hui Zhou

Al2O3-TiC-ZrO2ceramic composites (ATZ) were fabricated by hot-pressed sintering. The phases and microstructure of the composites were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The relative density and mechanical properties (flexural strength, fracture toughness and Vicker’s hardness) of the composites were tested. The results show that the microstructure of the composites was the gray core-white rim. With the increase of sintering temperature, the relative density and mechanical properties of the composites increased first and then decreased. The composite sintered at 1705°C has the highest synthetical properties, and its relative density, flexural strength, fracture toughness and Vickers hardness are 98.3%,970MPa,6.0 MPa•m1/2and 20.5GPa, respectively.


2018 ◽  
Vol 2018 ◽  
pp. 1-5 ◽  
Author(s):  
Qiang Wang ◽  
Jinyang Cui

Cement solidification/stabilization is a commonly used method for the remediation of contaminated soils. The stability characteristics of solidified/stabilized contaminated soils under freeze-thaw cycle are very important. A series of tests, which include unconfined compressive strength tests, freeze-thaw cycle tests, and scanning electron microscopy (SEM) tests, are performed to study the variation law of strength characteristics and microstructure. It aims at revealing the microcosmic mechanism of solidified/stabilized Pb2+ contaminated soils with cement under freeze-thaw cycle. The results show that the unconfined compressive strength of the contaminated soils significantly improved with the increase of the cement content. The unconfined compressive strength of stabilized contaminated soils first increases with the increase of times of freeze-thaw cycle, and after reaching the peak, it decreases with the increase of times of freeze-thaw cycle. The results of the scanning electron microscopy tests are consistent with those of the unconfined compressive strength tests. This paper also reveals the microcosmic mechanism of the changes in engineering of the stabilized contaminated soils under freeze-thaw cycle.


2015 ◽  
Vol 5 (01) ◽  
pp. 31
Author(s):  
Resky Irfanita ◽  
Asnaeni Ansar ◽  
Ayu Hardianti Pratiwi ◽  
Jasruddin J ◽  
Subaer S

The objective of this study is to investigate the effect of sintering temperature on the synthesis of SiC produced from rice husk ash (RHA) and 2B graphite pencils. The SiC was synthesized by using solid state reaction method sintered at temperatures of 750°C, 1000°C and 1200°C for 26 hours, 11.5 hours and 11.5 hours, respectively. The quantity and crystallinity level of SiC phase were measured by means of Rigaku MiniFlexII X-Ray Diffraction (XRD). The microstructure of SiC was examined by using Tescan Vega3SB Scanning Electron Microscopy (SEM). The XRD results showed that the concentration (wt%) of SiC phase increases with the increasing of sintering temperature. SEM results showed that the crystallinity level of SiC crystal is improving as the sintering temperature increases


Author(s):  
В.В. Привезенцев ◽  
В.С. Куликаускас ◽  
В.А. Скуратов ◽  
О.С. Зилова ◽  
А.А. Бурмистров ◽  
...  

AbstractSingle-crystal n -Si(100) wafers are implanted with ^64Zn^+ ions with an energy of 50 keV and dose of 5 × 10^16 cm^–2. Then the samples are irradiated with ^132Xe^26+ ions with an energy of 167 MeV in the range of fluences from 1 × 10^12 to 5 × 10^14 cm^–2. The surface and cross section of the samples are visualized by scanning electron microscopy and transmission electron microscopy. The distribution of implanted Zn atoms is studied by time-of-flight secondary-ion mass spectrometry. After irradiation with Xe, surface pores and clusters consisting of a Zn–ZnO mixture are observed at the sample surface. In the amorphized subsurface Si layer, zinc and zinc-oxide phases are detected. After irradiation with Xe with a fluence of 5 × 10^14 cm^–2, no zinc or zinc-oxide clusters are detected in the samples by the methods used in the study.


2007 ◽  
Vol 18 (2) ◽  
pp. 139-143 ◽  
Author(s):  
Gustavo Augusto Seabra Barbosa ◽  
Paulo Cézar Simamoto Júnior ◽  
Alfredo Júlio Fernandes Neto ◽  
Maria da Glória Chiarello de Mattos ◽  
Flávio Domingues das Neves

An inadequate fit at the abutment/implant interface can generate mechanical and biological problems. The laboratorial stages could induce misfit in such interface when the castable UCLA abutment type is used. The purpose of this study was to comparatively evaluate the performance of three prosthetic laboratories (Labs A, B and C) by vertical fit analysis of castable UCLA abutments on the casting and soldering stages of the same prosthesis. Four fixed prostheses were built by each laboratory using castable UCLA abutments. The evaluation was made by scanning electron microscopy under 500x magnification in the mesial and distal regions of each element of the prosthesis, totalizing 24 measurements per laboratory. The results were analyzed statistically by Kruskal-Wallis test (p<0.05). In the casting process, the values presented by the laboratories differed significantly to each other (p=0.004). After soldering, the values presented by the laboratories showed no significant difference (p=0.948). It may be concluded that the fit values obtained in the casting stage of UCLA abutments can be influenced when processed by different laboratories, and that conventional soldering itself increased the degree of framework misfit, regardless of which laboratory made it.


2017 ◽  
Vol 12 (1) ◽  
pp. 63-77 ◽  
Author(s):  
Siriporn Sirikingkaew ◽  
Nuta Supakata

This study presents the development of geopolymer bricks synthetized from industrial waste, including fly ash mixed with concrete residue containing aluminosilicate compound. The above two ingredients are mixed according to five ratios: 100:0, 95:5, 90:10, 85:15, and 80:20. The mixture's physico-mechanical properties, in terms of water absorption and the compressive strength of the geopolymer bricks, are investigated according to the TIS 168-2546 standard. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses are used to investigate the microstructure and the elemental and phase composition of the brick specimens. The results indicate that the combination of fly ash and concrete residue represents a suitable approach to brick production, as required by the TIS 168–2546 standard.


Minerals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 672
Author(s):  
Dimitris Kioupis ◽  
Aggeliki Skaropoulou ◽  
Sotirios Tsivilis ◽  
Glikeria Kakali

One of the areas of priority in a circular economy, regarding waste management, regards the valorization of construction and demolition wastes (CDW). This study suggests the synthesis of geopolymeric binders based almost entirely on construction and demolition wastes. Ceramic waste was used as the aluminosilicate precursor of the geopolymer synthesis, while glass waste was applied in the preparation of the activation solution. A fractional experimental design defined the optimum synthesis parameters, based on compressive strength values. The final products were characterized by means of X-Ray Diffraction (XRD), Fourier-Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). The glass waste was appropriately processed in order to prepare the activation solution for the geopolymerization of brick waste. In this work, CDW-based geopolymers were produced with a compressive strength in the range 10–44 MPa. The developed products contained 80–90 wt.% CDWs, depending on the method of activator preparation.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Liliana Ávila Córdoba ◽  
Gonzalo Martínez-Barrera ◽  
Carlos Barrera Díaz ◽  
Fernando Ureña Nuñez ◽  
Alejandro Loza Yañez

Concretes consisting of portland cement (OPC), silica sand, gravel, water, and recycled PET particles were developed. Specimens without PET particles were prepared for comparison. Curing times, PET particle sizes, and aggregate concentrations were varied. The compressive strength, compressive strain at yield point, and Young modulus were determined. Morphological and chemical compositions of recycled PET particles were seen in a scanning electron microscopy. Results show that smaller PET particle sizes in lower concentrations generate improvements on compressive strength and strain, and Young’s modulus decreases when the size of PET particles used was increased.


2014 ◽  
Vol 541-542 ◽  
pp. 388-391
Author(s):  
Long Ma ◽  
Guo Zhong Li

Red mud lightweight baking-free brick was prepared by red mud, fly ash and cement, mixed with a certain amount of activator agent and foaming agent. The influence of foaming agent on properties of red mud lightweight baking-free brick was studied. The micro-structure of red mud lightweight baking-free brick was characterized by scanning electron microscopy (SEM). The results show that when the foaming agent content is 10ml, the sample with better performance obtained and the density is 423kg/m3, flexural strength is 0.49MPa and compressive strength is 1.87MPa.


2012 ◽  
Vol 557-559 ◽  
pp. 1197-1200
Author(s):  
Jung Ting Tsai ◽  
Cheng Yu Han ◽  
Shung Tian Lin

The goal of this study was to investigate the sintering mechanism of Si powder, with the particle size of Si, sintering temperature, and sintering environment as the variables. The use of a crucible, by controlling the vapor atmosphere at certain temperatures, coarsened the silicon powder. Experiment of data show that by avoiding the vapor pressure of crucible a sintering at 1380°C causes the silicon powder easily to sinter to high density, without the use of any doping addition. Therefore it is to our advantage to discover the microstructure phenomenon of silicon powder and reveal its nature. The crystalline structure of the heat-treated samples was studied with Scanning electron microscopy (SEM) to explain the resultant of contamination that causes the densification.


Sign in / Sign up

Export Citation Format

Share Document