Modelling and Simulation of Temperature and Stress Analysis in TIG Welding Process

2015 ◽  
Vol 830-831 ◽  
pp. 294-297
Author(s):  
Nayan Chandak ◽  
Mohan Kumar Pradhan ◽  
Lokesh Boriwal

In this study, the welding process is modelled and analysed using ANSYS software. The temperature and residual stress produced during the process is depicted. During heating, the material conditions, parts affected by residual stress and the stress–strain state at different time interval is recorded and a subsequent structural analysis is used for the analysis, the same is used in the analysis where thermal and structural results are investigated. Subsequently, with sensitivity analysis the results are evaluated. Non-uniform meshing is used to entrap the result with fine mesh in the heat affected zone and coarse mesh away from it to save processing time. The results from the thermal structural analysis are presented to understand the process deeply and comparison of the graph plot between temperature and time is explained.

2017 ◽  
Vol 15 (3) ◽  
pp. 413 ◽  
Author(s):  
Miloš Milošević ◽  
Aleksandar Miltenović ◽  
Milan Banić ◽  
Miša Tomić

Residual stresses of the rail wheels are influenced by heat treatment during the manufacturing process. The quenching process during the manufacturing results in the residual stresses within the rail wheel that may be dangerous for the rail wheel during its operation. Determination of the residual stress in the rail wheel is important for understanding the damage mechanisms and their influence on the proper work of rail wheels. This paper presents a method for determining the residual stresses in the rail wheel during the quenching process by using the directly coupled thermal-structural analysis in ANSYS software.


2020 ◽  
Vol 64 (7) ◽  
pp. 1195-1212
Author(s):  
B. Lennart Josefson ◽  
R. Bisschop ◽  
M. Messaadi ◽  
J. Hantusch

Abstract The aluminothermic welding (ATW) process is the most commonly used welding process for welding rails (track) in the field. The large amount of weld metal added in the ATW process may result in a wide uneven surface zone on the rail head, which may, in rare cases, lead to irregularities in wear and plastic deformation due to high dynamic wheel-rail forces as wheels pass. The present paper studies the introduction of additional forging to the ATW process, intended to reduce the width of the zone affected by the heat input, while not creating a more detrimental residual stress field. Simulations using a novel thermo-mechanical FE model of the ATW process show that addition of a forging pressure leads to a somewhat smaller width of the zone affected by heat. This is also found in a metallurgical examination, showing that this zone (weld metal and heat-affected zone) is fully pearlitic. Only marginal differences are found in the residual stress field when additional forging is applied. In both cases, large tensile residual stresses are found in the rail web at the weld. Additional forging may increase the risk of hot cracking due to an increase in plastic strains within the welded area.


2017 ◽  
Vol 753 ◽  
pp. 305-309 ◽  
Author(s):  
Xu Lu

The welding H-section beam has good mechanical properties with its superior structure. So they become the main components of steel structure and have been widely used. In this paper, the welded H-section beam is used as the research object. The finite element simulation model is established. The heat source parameters are determined. The deformation of the steel due to the welding process is studied. The results show that the bottom plate and the bottom plate inward bending is about 2.32mm cause by welding process. The residual stress can reach 400MPa.


Author(s):  
A.S. Gusev ◽  
L.V. Zinchenko ◽  
S.A. Starodubtseva

When designing technical structures, the safety of their elements is a fundamental principle. This highlights the significance of the proposed solution to the structural analysis of the trajectories of non-Gaussian stationary processes. The solution aims to acquire source data for calculating the stress-strength reliability of structural elements operating under random loads. We analyze an approach that makes it possible to account for the statistical dependence between processes and their derivatives, despite the apparent lack of correlation between them. The considered approach can be utilized in the design of vibration protection of transport vehicles to calculate the probability of a shock absorber breakdown, the probability of loss of the road-wheel contact, etc. The operation reliability of such systems is defined as the probability that the absolute maximum of the process does not exceed the specified standard level during a certain time interval. The article presents the reliability calculation using structural analysis on the example of a one-dimensional stochastic system.


Author(s):  
Itaru Muroya ◽  
Youichi Iwamoto ◽  
Naoki Ogawa ◽  
Kiminobu Hojo ◽  
Kazuo Ogawa

In recent years, the occurrence of primary water stress corrosion cracking (PWSCC) in Alloy 600 weld regions of PWR plants has increased. In order to evaluate the crack propagation of PWSCC, it is required to estimate stress distribution including residual stress and operational stress through the wall thickness of the Alloy 600 weld region. In a national project in Japan for the purpose of establishing residual stress evaluation method, two test models were produced based on a reactor vessel outlet nozzle of Japanese PWR plants. One (Test model A) was produced using the same welding process applied in Japanese PWR plants in order to measure residual stress distribution of the Alloy 132 weld region. The other (Test model B) was produced using the same fabrication process in Japanese PWR plants in order to measure stress distribution change of the Alloy 132 weld region during fabrication process such as a hydrostatic test, welding a main coolant pipe to the stainless steel safe end. For Test model A, residual stress distribution was obtained using FE analysis, and was compared with the measured stress distribution. By comparing results, it was confirmed that the FE analysis result was in good agreement with the measurement result. For mock up test model B, the stress distribution of selected fabrication processes were measured using the Deep Hole Drilling (DHD) method. From these measurement results, it was found that the stress distribution in thickness direction at the center of the Alloy 132 weld line was changed largely during welding process of the safe end to the main coolant pipe.


2009 ◽  
Vol 14 (8) ◽  
pp. 717-725 ◽  
Author(s):  
P. Colegrove ◽  
C. Ikeagu ◽  
A. Thistlethwaite ◽  
S. Williams ◽  
T. Nagy ◽  
...  

2018 ◽  
Vol 37 (5) ◽  
pp. 397-403 ◽  
Author(s):  
Shude Ji ◽  
Zhanpeng Yang ◽  
Quan Wen ◽  
Yumei Yue ◽  
Liguo Zhang

AbstractTrailing intensive cooling with liquid nitrogen has successfully applied to friction stir welding of 2 mm thick 2060 Al-Li alloy. Welding temperature, plastic strain, residual stress and distortion of 2060 Al-Li alloy butt-joint are compared and discussed between conventional cooling and trailing intensive cooling using experimental and numerical simulation methods. The results reveal that trailing intensive cooling is beneficial to shrink high temperature area, reduce peak temperature and decrease plastic strain during friction stir welding process. In addition, the reduction degree of plastic strain outside weld is smaller than that inside weld. Welding distortion presents an anti-saddle shape. Compared with conventional cooling, the reductions of welding distortion and longitudinal residual stresses of welding joint under intense cooling reach 47.7 % and 23.8 %, respectively.


2020 ◽  
Vol 3 (1) ◽  
pp. 11-15
Author(s):  
Alireza M. Haghighi ◽  
Farhad S. Samani

Stiffener rings and stringers are used commonly in offshore and aerospace structures. Welding the stiffener to the structure causes the appearance of residual stress and distortion that leads to short-term and long-term negative effects. Residual stress and distortion of welding have destructive effects such as deformation, brittle fracture, and fatigue of the welded structures. This paper aims to investigate the effects of preheating, time interval and welding parameters such as welding current and speed on residual stress and distortion of joining an ST52-3N (DIN 1.0570) T-shape stiffener ring to an AISI 4130 (DIN 1.7218) thin-walled tubular shell by eleven pairs of welding line in both sides of the ring by means of finite element method (FEM). Results in tangent (longitudinal), axial and radial directions have been compared and the best welding methods proposed. After the comparison of the results, simultaneous welding both sides of the ring with preheating presented as the best method with less distortion and residual stresses among the studied conditions. The correctness of the FEM confirmed by the validation of the results.


Author(s):  
Murli Jha

Abstract: The initial dimensions and weight for the vehicle is considered from the Audi A8 vehicle as a reference. The specifications for the motor and battery are considered for the Mahindra e2o electric vehicle of similar dimensions. The main objective of this paper is to model and perform static analysis on the chassis of a four-seater car. The initial design for the chassis was a space frame body which is very rigid and had very less deflection. The second and final chassis is a ladder type chassis which is most common chassis type being used in Nepal and India. The difference in deflection between both the chassis type is very less, which is about 0.3235 mm for a reasonable reduction in weight which is about 120 Kg. The simulation part is carried out in ANSYS software. The result is selection of best suitable material for chassis on the basis of ANSYS and theoretically calculated result. Keywords: Chassis, Structural Analysis, Optimization, Four seater car


Sign in / Sign up

Export Citation Format

Share Document