Study on the Removal of Pb2+, Cu2+, and Cd2+ from Wastewater Using Modified Stilbite

2016 ◽  
Vol 852 ◽  
pp. 1342-1348
Author(s):  
Xi Chen ◽  
Tian Shun Cui ◽  
Shuang Zhao ◽  
Xiao Jun Deng

In this study, we studied the ability of modified Stilbite to adsorb heavy metals Pb2+, Cu2+, and Cd2+ from wastewater. In static conditions, we investigated the impact of pH, temperature, dosage, and the competitive adsorption characteristics of the modified Stilbite in addressing pollution of wastewater with Pb2+, Cu2+, Cd2+. The testing showed that: under normal circumstances, with a pH between 5-6, a dosage of 0.7 g, and an adsorption time of 90 minutes, the adsorption rate of the three metals was above 90%. The adsorption rate of Cu was greater than Pb, which was greater than Cd. The modified Stilbite adsorption of the three metals met Langmuir and Freundlich isothermal adsorption equations. The study also revealed that regenerated Stilbite, after adsorption, can still continue to be used for adsorption of heavy metals.

2021 ◽  
Vol 43 (1) ◽  
pp. 32-42
Author(s):  
Won Jung Ju ◽  
Jinsung An ◽  
Eun Hea Jho

Objectives:Plastics are widely used in daily life and in various industrial fields due to their convenience and thermal insulation, and the use of plastics is continuing to increase. In agricultural environments, plastics are largely used for vinyl houses and mulching vinyl. Used plastics are degraded into small fragments through physical, chemical, and biological processes. Among these, plastics with a particle size of 5 mm or less are defined as microplastics. Since microplastics have a relatively large surface area, various pollutants including heavy metals can potentially be adsorbed and affect the agricultural ecosystem. The purpose of this study is to evaluate the Pb and Cd adsorption characteristics on microplastic films frequently generated in agricultural environments.Methods:The Pb and Cd adsorption characteristics on microplastic films were studied with 3 different plastic films. Microplastic samples were prepared by cutting PVC (polyvinyl chloride) and PE (polyethylene) films to have the sizes of < 5 mm×5 mm. The prepared microplastic samples were placed in Pb or Cd solutions having a range of concentrations and shaken for 72 h for sorption tests. The experimental results were fitted to the Langmuir, Freundlich, and Temkin isothermal adsorption models.Results and Discussion:The isothermal adsorption test results obtained fitted well to the Langmuir and Freundlich models (R<sup>2</sup>>0.9), but not the Temkin model. Regardless of the plastic type, the values of Langmuir constant (KL) and Temkin constant (AT) for Pb were larger than those for Cd, and the Freundlich constant (nF) showed a tendency of Pb>Cd>1, indicating the greater Pb sorption strength or affinity than Cd on PVC and PE.Conclusions:This study shows that the microplastics in soil adsorb heavy metals like Cd and Pb affecting the heavy metal fate in the soil environment. With an increasing attention on the environmental problems due to plastic wastes, this study provides the basis for the need of management of soil environment. Therefore, further research on microplastics in soil environment is required.


Geofluids ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Shuang Xie ◽  
Zhang Wen ◽  
Hongbin Zhan ◽  
Menggui Jin

Heavy metals such as Cu(II) are widespread in the environment, and the impact of heavy metals on the environment of soils depends on the ability of soils to immobilize these pollutants. It is necessary to investigate the mechanism of interaction between heavy metal and soil from a soil remediation perspective. In this study, a series of experiments were conducted to investigate the adsorption and desorption behavior of Cu(II) in silty clay. Several impact factors such as pH, organic matter, temperature, and coexisted ions Zn(II) were considered. It was found that the adsorption process reached equilibrium after 4 hours of the experiment, and the data can be fitted well by the Elovich model and the double-constant model for the kinetic sorption process. The isothermal adsorption results showed that the adsorption rate reached a peak value when the initial concentration was about 20 mg L−1. The decrease of H+ can increase the adsorption activity of Cu(II) and reduce the ability of the desorption of Cu(II) ions. The adsorption capacity of Cu(II) is less than the desorption capacity under the condition of strong acidity and low concentration of Cu(II). In addition, the adsorption capacity of the native soil on Cu(II) was larger than that of the soil with the removal of organic matter, while the opposite was true for the desorption capacity on Cu(II). The maximum adsorption of Cu(II) occurred at 35°C for this study, and the binding energy increased as the temperature increased. Thermodynamic analysis revealed that the adsorption process of Cu(II) was spontaneous and endothermic. The Freundlich, Langmuir, Temkin, and Henry adsorption models were used for analyzing the adsorption isotherm of Cu(II), and it was found that the Freundlich model agreed the best with the experimental data compared with other three models. The results of the competitive adsorption experiments indicated that the competitive capacity of Cu(II) was greater than that of Zn(II) in low-permeability media such as silty clay, and the existence of binary metals can weaken the adsorption force between the single metal and the soil surface.


2018 ◽  
Author(s):  
C. Coy ◽  
A.V. Shuravilin ◽  
O.A. Zakharova

Приведены результаты исследований по изучению влияния промышленной технологии возделывания картофеля на развитие, урожайность и качество продукции. Выявлена положительная реакция растений на подкормку K2SO4 в период посадки. Корреляционно-регрессионный анализ урожайности и качества клубней выявил высокую степень достоверности результатов опыта. Содержание нитратов и тяжелых металлов в клубнях было ниже допустимых величин.The results of studies on the impact of industrial technology of potato cultivation on growth, yield and quality of products. There was a positive response of plants to fertilizer K2SO4 in the period of planting. Correlation and regression analysis of yield and quality of tubers revealed a high degree of reliability of the results of experience. The contents of nitrates and heavy metals in tubers was below the permissible values.


1995 ◽  
Vol 32 (9-10) ◽  
pp. 85-94 ◽  
Author(s):  
Michael O. Angelidis

The impact of the urban effluents of Mytilene (Lesvos island, Greece) on the receiving coastal marine environment, was evaluated by studying the quality of the city effluents (BOD5, COD, SS, heavy metals) and the marine sediments (grain size, organic matter, heavy metals). It was found that the urban effluents of Mytilene contain high organic matter and suspended particle load because of septage discharge into the sewerage network. Furthermore, although the city does not host important industrial activity, its effluents contain appreciable metal load, which is mainly associated with the particulate phase. The city effluents are discharged into the coastal marine environment and their colloidal and particulate matter after flocculation settles to the bottom, where is incorporated into the sediments. Over the years, the accumulation of organic matter and metals into the harbour mud has created a non-point pollution source in the relatively non-polluted coastal marine environment of the island. Copper and Zn were the metals which presented the higher enrichment in the sediments of the inner harbour of Mytilene.


Author(s):  
Joshua O. Ighalo ◽  
Lois T. Arowoyele ◽  
Samuel Ogunniyi ◽  
Comfort A. Adeyanju ◽  
Folasade M. Oladipo-Emmanuel ◽  
...  

Background: The presence of pollutants in polluted water is not singularized hence pollutant species are constantly in competition for active sites during the adsorption process. A key advantage of competitive adsorption studies is that it informs on the adsorbent performance in real water treatment applications. Objective: This study aims to investigate the competitive adsorption of Pb(II), Cu(II), Fe(II) and Zn(II) using elephant grass (Pennisetum purpureum) biochar and hybrid biochar from LDPE. Method: The produced biochar was characterised by Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FTIR). The effect of adsorption parameters, equilibrium isotherm modelling and parametric studies were conducted based on data from the batch adsorption experiments. Results: For both adsorbents, the removal efficiency was >99% over the domain of the entire investigation for dosage and contact time suggesting that they are very efficient for removing multiple heavy metals from aqueous media. It was observed that removal efficiency was optimal at 2 g/l dosage and contact time of 20 minutes for both adsorbent types. The Elovich isotherm and the pseudo-second order kinetic models were best-fit for the competitive adsorption process. Conclusion: The study was able to successfully reveal that biomass biochar from elephant grass and hybrid biochar from LDPE can be used as effective adsorbent material for the removal of heavy metals from aqueous media. This study bears a positive implication for environmental protection and solid waste management.


Author(s):  
Gavin H. West ◽  
Laura S. Welch

This chapter describes the hazards for construction workers, with a particular focus on injuries as well as exposures to hazardous chemicals and dusts. A section describes hazardous exposures to lead and other heavy metals. Another section describes noise exposure. The impact of musculoskeletal disorders among construction workers is then discussed. A section on respiratory diseases focuses on asbestosis, silicosis, chronic obstructive pulmonary disease, and asthma. Exposures known to cause dermatitis and cancer are reviewed. There is a discussion of engineered nanomaterials as a potential emerging hazard. Various approaches to prevention and control, including regulations and health services, are described.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jing Zhang ◽  
Jiren Wang ◽  
Chunhua Zhang ◽  
Zongxiang Li ◽  
Jinchao Zhu ◽  
...  

AbstractTo study the adsorption characteristics of CO, CO2, N2, O2, and their binary-components in lignite coal, reveal the influence of CO2 or N2 injection and air leakage on the desorption of CO in goafs, a lignite model (C206H206N2O44) was established, and the supercell structure was optimized under temperatures of 288.15–318.15 K for molecular simulation. Based on molecular dynamics, the Grand Canonical Monte Carlo method was used to simulate the adsorption characteristics and the Langmuir equation was used to fit the adsorption isotherms of gases. The results show that for single-components, the order of adsorption capacity is CO2 > CO > O2 > N2. For binary-components, the competitive adsorption capacities of CO2 and CO are approximate. In the low-pressure zone, the competitive adsorption capacity of CO2 is stronger than that of CO, and the CO is stronger than N2 or O2. From the simulation, it can be seen that CO2, N2 or O2 will occupy adsorption sites, causing CO desorption. Therefore, to prevent the desorption of the original CO in the goaf, it is not suitable to use CO2 or N2 injection for fire prevention, and the air leakage at the working faces need to be controlled.


2021 ◽  
Vol 11 (14) ◽  
pp. 6592
Author(s):  
Ana Moldovan ◽  
Maria-Alexandra Hoaghia ◽  
Anamaria Iulia Török ◽  
Marius Roman ◽  
Ionut Cornel Mirea ◽  
...  

This study aims to investigate the quality and vulnerability of surface water (Aries River catchment) in order to identify the impact of past mining activities. For this purpose, the pollution and water quality indices, Piper and Durov plots, as well vulnerability modeling maps were used. The obtained results indicate that the water samples were contaminated with As, Fe, Mn, Pb and have relatively high concentrations of SO42−, HCO3−, TDS, Ca, K, Mg and high values for the electrical conductivity. Possible sources of the high content of chemicals could be the natural processes or the inputs of the mine drainage. Generally, according to the pollution indices, which were correlated to high concentrations of heavy metals, especially with Pb, Fe and Mn, the water samples were characterized by heavy metals pollution. The water quality index classified the studied water samples into five different classes of quality, namely: unsuitable for drinking, poor, medium, good and excellent quality. Similarly, medium, high and very high vulnerability classes were observed. The Durov and Piper plots classified the waters into Mg-HCO3− and Ca-Cl− types. The past and present mining activities clearly change the water chemistry and alter the quality of the Aries River, with the water requiring specific treatments before use.


Author(s):  
Kerstin Jurk ◽  
Katharina Neubauer ◽  
Victoria Petermann ◽  
Elena Kumm ◽  
Barbara Zieger

AbstractSeptins (Septs) are a widely expressed protein family of 13 mammalian members, recognized as a unique component of the cytoskeleton. In human platelets, we previously described that SEPT4 and SEPT8 are localized surrounding α-granules and move to the platelet surface after activation, indicating a possible role in platelet physiology. In this study, we investigated the impact of Sept8 on platelet function in vitro using Sept8-deficient mouse platelets. Deletion of Sept8 in mouse platelets caused a pronounced defect in activation of the fibrinogen receptor integrin αIIbβ3, α-granule exocytosis, and aggregation, especially in response to the glycoprotein VI agonist convulxin. In contrast, δ-granule and lysosome exocytosis of Sept8-deficient platelets was comparable to wild-type platelets. Sept8-deficient platelet binding to immobilized fibrinogen under static conditions was diminished and spreading delayed. The procoagulant activity of Sept8-deficient platelets was reduced in response to convulxin as determined by lactadherin binding. Also thrombin generation was decreased relative to controls. Thus, Sept8 is required for efficient integrin αIIbβ3 activation, α-granule release, platelet aggregation, and contributes to platelet-dependent thrombin generation. These results revealed Sept8 as a modulator of distinct platelet functions involved in primary and secondary hemostatic processes.


Sign in / Sign up

Export Citation Format

Share Document