Structural Behaviour of Ferrogeopolymer Slabs under Flexure

2016 ◽  
Vol 866 ◽  
pp. 109-113
Author(s):  
Rathinam Kumutha ◽  
Kanagarajan Vijai ◽  
P. Rajeswaran

The main objective of this paper was to present the results of experimental investigation carried out to study the structural behaviour of ferrogeopolymer elements under flexure. Initially the properties of geopolymeric binder prepared using the source materials such as Fly ash and Ground Granulated Blast Furnace Slag (GGBS) without conventional cement have been investigated. The different parameters considered in this study are the ratio of binder to fine aggregate (1:2 and1:3) and the ratio of Na2SiO3 to NaOH solutions (2.0 and 2.5). The various combinations of Fly ash and GGBS considered are 90% & 10% and 80% & 20%. The alkaline liquid to binder ratio is fixed as 0.45. The individual properties of mortar such as Compressive Strength and Density were determined as per relevant Indian standards. The geopolymer concrete mix that gives the highest compressive strength was used to cast the ferrogeopolymer structural slabs. Four numbers of rectangular slabs of size 800 mm x 300 mm x 25 mm were prepared with two types of meshes such as mild steel and galvanized iron weld mesh with single and double layers. Based on the test results Load-Deflection curves were drawn and the effectiveness of mild steel and galvanized iron weld meshes was compared from the characteristics such as first crack load, ultimate load, energy absorption and ductility.

The purpose of this experimental research is to study the flexural behavior of Ferro-Geopolymer slab panels. Initially the ratio of binder to fine aggregate (1:2, 1:2.5, 1:3) and the ratio of Na2SiO3/ NaOH solution (2.5) is considered. The different combination of Fly ash and GGBS were considered. Ratio of alkaline liquid to binder ratio is fixed as 0.45. The Geopolymer mortar mix that gives compressive strength nearly equal to M20 grade concrete target mean strength was used to cast Ferro-Geopolymer slab panels. A slab of size (1000X1000X30) mm were cast of both ferrocement and Ferro-Geopolymer slab panels with two types of mesh were used such as square woven and square welded with single and double layers. Based on the results of slab load vs deflection of both types of meshes were compared from the characteristics of such as first crack load and ultimate load.


2015 ◽  
Vol 754-755 ◽  
pp. 468-472 ◽  
Author(s):  
Chao Lung Hwang ◽  
Trong Phuoc Huynh

This work investigates the possibility of using fly ash (FA) and Vietnam residual rice husk ash (RHA) in producing unfired building bricks with applying densified mixture design algorithm (DMDA) method. In this research, little amount of cement was added into the mixtures as binder substitution. Unground rice husk ash (URHA), an agricultural by-product, was used as partial fine aggregate replacement (10% and 30%) in the mixtures. The solid bricks of 220×105×60 mm in size were prepared in this study. The hardened properties of the bricks were investigated including compressive strength, flexural strength and water absorption according to corresponding Vietnamese standards. Forming pressure of 35 MPa was applied to form the solid bricks in the mold. The test results show that all brick specimens obtained good mechanical properties, which were well conformed to Vietnamese standard. Compressive strength and flexural strength of the bricks were respectively in range of 13.81–22.06 MPa and 2.25–3.47 MPa. It was definitely proved many potential applications of FA and RHA in the production of unfired building bricks.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Djedjen Achmad ◽  
Desi Supriyan

ABSTRACTHas been researched the impact of mud in aggregate on geopolymer concrete with studies using the cement concrete as a reference. In this study both of concrete are mixed with a variation of mud of 0%, 0.75%, 3% and 5.75% of the combined aggregate weight. Compressive strength of cement concrete is designed with a target of 300 kg / cm2 and geopolymer concrete is made with water binder ratio (w/b) 0.25, Molarity 12 M, the ratio of sodium silicate and sodium hydroxide 1.5. At the age of 3, 7, 14 and 28 day tested of compressive strength, while the spliting test, flexural tensile strength, and modulus of elasticity are tested at 28 days. From the test results, the higher mud content in aggregate , the mechanical properties of the concrete are decreased. Based on testing of compressive strength in cement concrete at 28 days, with a 3% mud content (the content of the reference mud) turns of compressive strength decreased by 77.356%. Of the percentage reduction on the compressive strength of the cement concrete, can be compared to the mud content in geopolymer concrete at 2.04%. Thus the maximum mud on geopolymer concrete aggregate is, for coarse aggregate of 0.68% and a maximum mud content for fine aggregate was 3.4%.Key words : Mud, aggregate, concrete, cement, geopolimer, strengthABSTRAKTelah diteliti dampak kadar lumpur pada agregat untuk beton geopolimer dengan penelitian menggunakan benda uji beton semen sebagai acuan dan beton geopolimer. Dalam penelitian ini ke dua beton tersebut dicampur dengan lumpur gabungan agregat kasar dan agregat halus dengan variasi 0 %, 0.75 %, 3 % dan 5,75 % dari berat agregat gabungan. Beton semen dirancang dengan target kuat tekan 300 kg/cm2 dan beton geopolimer dibuat dengan campuran water binder ratio (w/b) 0.25, Molaritas 12 M, perbandingan sodium silikat dan sodium hidroksida 1.5. Pada umur 3, 7, 14 dan 28 hari dilakukan uji kuat tekan, sedangkan uji kuat tarik belah, uji kuat tarik lentur, dan modulus elastisitas dilakukan pada umur 28 hari. Dari hasil uji terlihat bahwa semakin tinggi kadar lumpur pada agregat, karakteristik mekanis kedua beton tersebut mengalami penurunan. Berdasarkan pengujian kuat tekan pada beton semen umur 28 hari, dengan kadar lumpur 3 % (kadar lumpur referensi) ternyata beton semen mengalami penurunan kuat tekan sebesar 77.356 %. Dari persentase penurunan kuat tekan beton semen tersebut, diplot pada grafik kuat tekan beton geopolimer maka persentase kadar lumpur gabungan yang mengalami penurunan 77.356 % adalah 2.04 %. Dengan demikian kadar lumpur maksimum pada agregat beton geopolimer adalah, untuk agregat kasar sebesar 0.68 % dan kadar lumpur maksimum untuk agregat halus adalah 3.4 %.Kata kunci : Lumpur, agregat, beton, semen, geopolimer, kekuatan


2013 ◽  
Vol 592-593 ◽  
pp. 651-654
Author(s):  
Aneta Nowak-Michta

The influence of fly ash quality and quantity on abrasion resistance of hardened concretes with siliceous fly ash addition is analysed in the paper. Abrasion resistance was measured in two standard tests according to EN 1338: 2005: reference test of the Wide Wheel and alternative test of the Bohme. Cement was replaced with 20, 35, and 50% of Class F siliceous fly ash in three categories of losses of ignition A, B and C by mass. The water to binder ratio, the air-entraining and the workability of mixtures were maintained constant at 0.38, 4.5% and 150 mm respectively. Test results indicated that in both methods, all tested concretes according to EN 1338: 2005 could be classified to 4-the highest class of abrasion resistance. In reference test of the Wide Wheel fly ash quality and quantity not influences abrasion resistance. However, in alternative, Böhme test abrasion resistance lowering with growth quantity of fly ash in binder, while loss of ignition of fly ash no influenced abrasion resistance. There were no correlation between the abrasion resistance and the compressive strength.


2019 ◽  
Vol 65 (1) ◽  
pp. 3-16 ◽  
Author(s):  
V.C. Prabha ◽  
V. Revathi

AbstractAn attempt was made in the present work to study the compressive strength and microstructure of geopolymer containing high calcium fly ash (HCFA) and silica fume. Concentration of sodium hydroxide solution 8M, 10M, 12M & 14M, liquid to binder ratio 0.5 and sodium hydroxide to sodium silicate ratio 2.5 were selected for the mixes. Geopolymer mortar test results indicated that the mix with 40% silica fume by the weight of HCFA yielded higher compressive strength under ambient curing. The XRD pattern typically shows the major portion of amorphous phase of geopolymer. The existence of C-A-S-H gel, N-A-S-H gel and hydroxysodalite gel products were observed through SEM which developed dense microstructure and thus enhanced strength of HCFA and silica fume geopolymer.


2018 ◽  
Vol 765 ◽  
pp. 285-289
Author(s):  
Osama Ahmed Mohamed ◽  
Waddah Al Hawat ◽  
Omar Fawwaz Najm

Supplementary cementitious materials such as fly ash, silica fume and ground granulated blast furnace slag (GGBS) have been used widely to partially replace cement in producing self-consolidating concrete (SCC). The production of cement is associated with emission of significant amounts of CO2 and increases the human footprint on the environment. Fly ash, silica fume, and GGBS are recycled industrial by-products that also impart favorable fresh and hardened properties on concrete. This study aims to assess the effect of the amounts of fly ash and silica fume on strength and chloride penetration resistance of concrete. Rapid Chloride Penetration Test (RCPT) was used to assess the ability of SCC to resist ingress of chlorides into concrete. SCC mixes with different dosages of fly ash and silica fume were developed and tested at different curing ages. Test results showed that replacing 20% of cement with fly ash produced the highest compressive strength of 67.96 MPa among all fly ash-cement binary mixes. Results also showed that replacing15% of cement with silica fume produced the highest compressive strength of 95.3 MPa among fly ash-cement binary mixes. Using fly ash and silica fume consistently increased the concrete resistance to chloride penetration at the early ages. Silica fume at all dosages results in low or very low levels of chloride penetration at all curing ages of concrete.


2020 ◽  
Vol 63 (2) ◽  
pp. 89-108
Author(s):  
Elisabeth Helsing ◽  
Peter Utgenannt

AbstractAccording to Swedish experience the slab method in CEN/TS 12390-9 is successful in predicting the salt-frost resistance of Portland cement concrete. However, doubts have been raised whether the same can be said when used on concrete with supplementary cementitious material, e.g. fly ash or ground granulated blast furnace slag (GGBS). Test results from concrete mixes with up to 35 % fly ash 65 % GGBS, with two different Portland cements and a water-to-binder ratio of 0.45 are presented in this paper. The tests were carried out with the standard method and with five modifications concerning the pre-conditioning of the specimens before freeze-thaw cycling. The age of the specimens at sawing was increased, the time in 65 % RH was prolonged and exposure to 1 % CO2-environment was used. The results show that for air-entrained concrete with fly ash or GGBS both prolonging the exposure to 65 % RH and exposure to CO2 diminishes the salt-frost resistance. The influence increases with increasing amount of fly ash or GGBS. However, the type of cement also has a certain influence. The influence of exposure to CO2 on the salt-frost resistance of concrete without entrained air was totally different from the influence on concrete with entrained air.


2021 ◽  
Vol 06 (09) ◽  
Author(s):  
Utami Sylvia Lestari ◽  

Cement Treated Base (CTB) is a pavement layer located between the sub-base and surface layers. This pavement layer uses fine aggregate (sand) and cement as a binder. Fly ash is coal burning waste that can be used as an added material for road pavement. This study aimed to analyze the use of fly ash in the cement treated base pavement mixture. Fly ash was used as a substitute of cement. The composition used consists of fine aggregate (sand), cement, fly ash and water. The compressive strength test was carried out on variations in the composition of the test object. The requirements for CTB specifications were to have compressive strength test results ranging between 45 kg/cm2 – 55 kg/cm2 at the age of the test object for 7 days. After being tested, it was found that the composition of 70% fine aggregate (sand), 5% Portland cement, and 25% fly ash had an average compressive strength of 49.823 kg/cm2.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0253006
Author(s):  
Hemn Unis Ahmed ◽  
Ahmed Salih Mohammed ◽  
Azad A. Mohammed ◽  
Rabar H. Faraj

Geopolymer concrete is an inorganic concrete that uses industrial or agro by-product ashes as the main binder instead of ordinary Portland cement; this leads to the geopolymer concrete being an eco-efficient and environmentally friendly construction material. A variety of ashes used as the binder in geopolymer concrete such as fly ash, ground granulated blast furnace slag, rice husk ash, metakaolin ash, and Palm oil fuel ash, fly ash was commonly consumed to prepare geopolymer concrete composites. The most important mechanical property for all types of concrete composites, including geopolymer concrete, is the compressive strength. However, in the structural design and construction field, the compressive strength of the concrete at 28 days is essential. Therefore, achieving an authoritative model for predicting the compressive strength of geopolymer concrete is necessary regarding saving time, energy, and cost-effectiveness. It gives guidance regarding scheduling the construction process and removal of formworks. In this study, Linear (LR), Non-Linear (NLR), and Multi-logistic (MLR) regression models were used to develop the predictive models for estimating the compressive strength of fly ash-based geopolymer concrete (FA-GPC). In this regard, a comprehensive dataset consists of 510 samples were collected in several academic research studies and analyzed to develop the models. In the modeling process, for the first time, twelve effective variable parameters on the compressive strength of the FA-GPC, including SiO2/Al2O3 (Si/Al) of fly ash binder, alkaline liquid to binder ratio (l/b), fly ash (FA) content, fine aggregate (F) content, coarse aggregate (C) content, sodium hydroxide (SH)content, sodium silicate (SS) content, (SS/SH), molarity (M), curing temperature (T), curing duration inside ovens (CD) and specimen ages (A) were considered as the modeling input parameters. Various statistical assessments such as Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Scatter Index (SI), OBJ value, and the Coefficient of determination (R2) were used to evaluate the efficiency of the developed models. The results indicated that the NLR model performed better for predicting the compressive strength of FA-GPC mixtures compared to the other models. Moreover, the sensitivity analysis demonstrated that the curing temperature, alkaline liquid to binder ratio, and sodium silicate content are the most affecting parameter for estimating the compressive strength of the FA-GPC.


ASTONJADRO ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 213
Author(s):  
Yulita Arni Priastiwi ◽  
Arif Hidayat ◽  
Rinaldo Tamrin ◽  
Difa Bagus Sendrika

<p class="IsiAbstrak">This study analyzes the effect of immersion of H<sub>2</sub>SO<sub>4</sub> (sulfuric acid) solution with a concentration of 10% on porosity, density and compressive strength of mortar with PPC cement and geopolymer with white soil substitution mortar. The purpose of this study was to determine the resistance of mortar with PPC cement and geopolymer with white soil substitution mortar when immersed in 10% H<sub>2</sub>SO<sub>4</sub> solution. The test object was 5x5x5 cm mortar with materials used including fly ash from PLTU Tanjung Jati B Jepara, white soil from Kupang, fine aggregate, water and alkaline activator in the form of a mixture of 8M NaOH and Na<sub>2</sub>SiO<sub>3</sub> and also PPC cement. The composition of the geopolymer mortar mixture is 1binder: 3Fine Aggregate: 0,5Water-Binder Ratio, while the mortar with PPC cement is made with a composition of 1PPC: 3Fine Aggregate: 0,5Water-Cement Ratio. The geopolymer mortar was made in 6 variations with a white soil substitution percentage of 0-25% with an increase of 5% for each variation. Compressive strength testing using a compression test apparatus. The test results show that the variation in the percentage of white soil substitution has less effect on the size of the porosity value. As for the value of compressive strength and density, white soil substitution has an effect, the higher the white soil substitution, the higher the compressive strength and mortar density values. Geopolymer mortar was better to withstand 10% sulfuric acid solution, while mortar with PPC cement had no resistance to 10% sulfuric acid solution because it continued to deteriorate over the course of the day. The greatest compressive strength is in variation IV (15% white soil substitution) of 15,31 MPa at 28 days of age, while the smallest porosity and greatest density are in variation VI (25% white soil substitution) of 0,17% and 2,205 grams/cm<sup>3</sup>.</p>


Sign in / Sign up

Export Citation Format

Share Document