Fine Blanking Technology Optimization of Front End Cover of Timing System for Compressed

2016 ◽  
Vol 872 ◽  
pp. 67-72 ◽  
Author(s):  
Xin Yu Li ◽  
Chun Dong Zhu ◽  
Yan Chang Zhu

Front cover is an important part of the car timing system, it is also an important parts of the engine to ensure the smooth flow.The quality of end cap is directly related to the normal and efficient operation of the engine.In this paper, through the research of the fine blanking process of the front cover of the timing system, a new type of fine blanking die is designed to improve the service life of the die and its parts.The influence rules of the process parameters such as the back top force, the counter pressure and the corner radius on punching smooth zone and the life of the mold, are analyzed by using the finite element software and a series of optimized process parameters are obtained after this.

2008 ◽  
Vol 575-578 ◽  
pp. 316-321 ◽  
Author(s):  
H. Du ◽  
S.M. Ding

This paper puts forward a negative clearance fine-blanking theory and its technique process, and introduces the technical processing of fine-blanking which can be used on ordinary punching machines. In this paper, computer simulation and the experimental study of negative clearance fine-blanking process are carried out. Thus the parameters of the force of blanking, the value of negative clearance are determined. The effect of fine-blanking quality was obtained, and the perfect rate of the blanking fracture achieves 90%. By comparing negative clearance precise blanking with conventional blanking, the following conclusions are drawn: 1. Blanking quality of negative clearance blanking is increased by 57% than that of conventional blanking. 2. The down surface of the work-pieces obtained by the conventional blanking processing have 0.2 - 0.5 mm longitudinal burrs, while the work-pieces obtained by the negative clearance blanking have no burrs. Thus the processing of clear away the burrs could be spared. And the manpower, the material, energy and the equipment investment are saved. The researching result provides theoretic reference and the experimental data for the engineering practice. It has instructive significance and reference value to engineering manufacturing.


2018 ◽  
Vol 10 (6) ◽  
pp. 168781401878340
Author(s):  
Lingzhu Gong ◽  
Xiaoxiang Yang ◽  
Kaibin Kong ◽  
Shuncong Zhong

To improve the product quality of self-lubricating spherical plain bearing, a new shape of the outer rings for spherical plain bearings was optimally designed based on virtual orthogonal experiments using finite element software ABAQUS. The depth inclined end wall, together with the length of annular wall, the depth of annular concavity, the outer ring thickness, and the edge radius were taken as the main structural parameters in the analysis. For the evaluation parameters, the maximum bearing clearance, the maximum contact pressure, the maximum extrusion load, and the maximum equivalent plastic strain were considered. The optimal structure parameter combination was identified based on the intuitive comprehensive balance analysis method. The simulation results demonstrated much improvement for the forming quality by using a new type of the outer ring, which was optimized by the virtual orthogonal experiments. The new type of the outer ring could be used to the forming process in assembling the spherical plain bearings.


2011 ◽  
Vol 473 ◽  
pp. 290-297 ◽  
Author(s):  
Wojciech Wieckowski ◽  
Piotr Lacki ◽  
Janina Adamus

The required technological quality of the blanked products can be achieved through operations of fine blanking. This allows for obtaining products with improved dimensional accuracy and good quality cut-surface. In order to cut products from soft materials, including aluminium and its alloys, the methods of fine blanking with upsetting and fine blanking with reduced clearance are typically employed. The study presents the results of numerical modelling of the fine blanking process for a disk made of 1-millimetre sheet aluminium EN AW-1070A. The goal of the numerical simulations was to evaluate the effect of clearance between blanking die and the punch, and the impact of V-ring indenter on stress and strain distribution in the shearing zone.


2011 ◽  
Vol 291-294 ◽  
pp. 440-443 ◽  
Author(s):  
Chun Dong Zhu ◽  
Fu Tao Li ◽  
Zhi Qiang Gu

Due to the limitation of 2D simulation in fine blanking, finite element software DEFORM-3D was used to simulate the 3D model of Back Plate. In this article the Normalized Cockroft&Latham fracture criterion was chosen to simulate the blanking process. The distribution and developing trend of the hydrostatic stress, equivalent stress in the fine blanking process are predicted. When the die radii are between 0.4mm and 0.6mm, burnished surface improves. It shows that the ideal blanking clearance value is 0.6% of the material thickness. The results indicate that FE numerical simulation could effectively optimize fine blanking process and offer basis for quality improvement.


2013 ◽  
Vol 650 ◽  
pp. 567-571
Author(s):  
M. Shahsavan ◽  
M. Sedighi

Fine blanking process can produce parts with accurate cutting edge quality. Studying the effects of process parameters on accuracy and quality of fine banking products are usually expensive. In this paper, an innovative idea has been introduced for a set of fine blanking test rig which is not as complicate and expensive as standard fine blanking dies but it could be used alternatively for limited laboratory works. The main concept of the rig is based on manual adjustment of counter punch force and blank holder force by means of rubber spring and torque meters respectively. As a case study, the effect of counter punch force of fine blanking process in a 2mm thickness steel AISI-1006 sheet was studied by this test rig. The results show that increasing the counter punch force makes burr dimension on cutting edge to get smaller which means better quality of the product.


2011 ◽  
Vol 314-316 ◽  
pp. 695-702
Author(s):  
Jian Lan ◽  
Yong Zhang ◽  
Chang Peng Song ◽  
Lin Hua

The shrinkage cavity defect of the extruded boss is harmful to the quality of fine blanking workpiece and process. To suppress the shrinkage cavity defect, firstly, the boss extrusion is simulated to analyze main features of metal flow and the causes of the shrinkage cavity defects; secondly, some parameters affecting the material flow, such as the size of die and punch, blank holder force, friction coefficient, sheet thickness and counter force, are studied to figure out their influences on the depth of shrinkage cavities respectively; finally, the process parameters of a special workpiece are selected according to research results above, and experiment verified that the selected parameters can suppress the shrinkage cavity defect pertinently. In the paper, the shrinkage cavity defect is systematically studied for the first time, and this provides the base to design and optimize the extruded boss feature in fine blanking process.


2011 ◽  
Vol 697-698 ◽  
pp. 377-382
Author(s):  
J.H. Li ◽  
Zhong Mei Zhang

The plastic analysis software DEFORM was used to simulate the blanking process of metal plastic without burr. Based on theory of the rigid FEM, the geometry model used for blanking with a negative clearance was established. The facts of influence the quality of the blanking work pieces were analyzed and concluded, at the same time, the parameters were indicated to improve the quality of the blanking work pieces. Through the experiment, the blanking load was measured with different clearance, thickness and material in group. The reciprocity between these facts was analyzed and the clearance was optimized. After the blanking load was regress analysis, the coefficient of the load and these facts were researched. Using quality analysis of the work pieces in the experiment, the thickness and the material were obtained which were suitable for blanking of metal plastic without burr. The reactions which were used to separate the metal were studied, which offered thereunder for proper remaining based on the better quality and smaller blanking load.


2012 ◽  
Vol 229-231 ◽  
pp. 105-108
Author(s):  
H. Du ◽  
F. Li ◽  
H. Zhang

The stainless steels are used more and more in blanking process. To further enhance the quality of blanking fracture surface, this paper made the related experiments of fine-blanking with negative clearance in stainless steel. Through the comparison analysis between the fine-blanking microstructure and common blanking one with stainless steel, the result points out that the fine-blanking with negative clearance inhibit the warping in common blanking, make the work-hardening of material fracture surface improves, and which can have a more positive effect for the fine-blanking with negative clearance. Meanwhile, the work-hardening capacity of two blanking methods was different, and it can enhance the punching section entire strength commendably by fine blanking with negative clearance.


2010 ◽  
Vol 443 ◽  
pp. 140-145 ◽  
Author(s):  
Suthep Yiemchaiyaphum ◽  
Masahiko Jin ◽  
Sutasn Thipprakmas

Considering the advantages of the fine-blanking process, the smooth-cut surface without further operation could be fabricated. However, one of the major problems of the fine-blanking is the occurrence of the die-roll formation. This problem is the main factor which affects the quality of the fine-blanked parts. In this study, to reduce the amount of die-roll formation, the application of back-up ring was proposed. The finite element method (FEM) was used to investigate the effects of back-up ring. In addition, the effects of bridge width were also investigated. The FEM simulation results illustrated that the mechanism of back-up ring and the effects of bridge width could be theoretically clarified base on the material flow analysis. The FEM simulation and experimental results showed the good agreement with each other. Therefore, the application of back-up ring could reduce the amount of die-roll formation on the fine-blanked parts. In this study, the amount of die-roll formation increased as the bridge width increase and it was constant at the bridge width of over 15 mm.


Author(s):  
Roya Darabi ◽  
Erfan Azinpour ◽  
Felipe K Fiorentin ◽  
Manuel J Abarca ◽  
Jose Cesar de Sá ◽  
...  

The present contribution addresses the micromechanical and thermal analysis of directed energy deposition-manufactured, stainless steel 316L components by utilizing experimental and numerical analyses. It has been established that a combination of controlling process parameters, manufacturing environment and microstructural anisotropies could adversely affect the quality of as-deposited parts. Among other factors, the shape, size, and distribution of the microvoids and porosities could, to some extent, have deteriorating effects on the mechanical properties of the additively manufactured components. In this work, the micromechanically motivated Gurson–Tvergaard–Needleman damage model is utilized and the performance of the model is evaluated by observing the damage accumulation in the loaded additively manufactured specimens. By relying to the laboratory-based material data and fractographic imagery from nonstandard tensile testing on fabricated samples in different building directions, numerical model predictions are found to be in a good agreement with the experimental observations. Furthermore, by resorting to the finite element software capabilities, the thermal analyses are carried out on the manufactured cube component and the influence of the process parameters on the temperature distribution is revealed.


Sign in / Sign up

Export Citation Format

Share Document