Effect of Morphology of MgO on the CO2 Adsorption Capacity for Low Temperature Applications

2017 ◽  
Vol 888 ◽  
pp. 503-507
Author(s):  
Ramarao Poliah ◽  
Srimala Sreekantan

MgO nanoparticles, nanoflakes and nanorods were synthesized by sol-gel or hydrothermal method. X-ray diffraction confirmed the formation of cubic MgO in entire samples after calcination. The round particles diameter was in the range of 200-500 nm while the flakes structure were with thickness 100-200 nm. The rods were in average diameter of 150-500 nm. CO2 adsorption capacity was measured by using TGA. MgO flakes with smaller crystallite size demonstrated high CO2 adsorption capacity of 1.738 mmol/g at low adsorption temperature of 50°C.

2014 ◽  
Vol 609-610 ◽  
pp. 250-254
Author(s):  
Ya Bin Li ◽  
Jin Tian Huang ◽  
Yan Fei Pan

In the paper, the TiO2nanomaterials adopted the microcrystalline cellulose as the template by the template method and sol-gel method was prepared. Through the infrared spectrometer (FT-IR), scanning electron microscope (SEM), X-ray diffraction (XRD), the surface morphology, composition and the type of the samples were characterized respectively. The influence of the macro morphology of TiO2photocatalytic performance to use the reaction of decolorization and degradation of methyl orange as model was analyzed. The results showed that TiO2which was produced by the template of sallix fiber was Rod-shaped and the average diameter size of nanocomposite structure was 20.592 nm, which can provide a new method of producing other morphology of TiO2.


2015 ◽  
Vol 1088 ◽  
pp. 81-85 ◽  
Author(s):  
T.N. Myasoedova ◽  
Victor V. Petrov ◽  
Nina K. Plugotarenko ◽  
Dmitriy V. Sergeenko ◽  
Galina Yalovega ◽  
...  

Thin SiO2ZrO2films were prepared, up to 0.2 μm thick, by means of the sol–gel technology and characterized by a Scanning electron microscopy and X-ray diffraction. It is shown the presence of monoclinic, cubic and tetragonal phases of ZrO2in the SiO2matrix. The crystallites sizes depend on the annealing temperature of the film and amount to 35 and 56 nm for the films annealed at 773 and 973 K, respectively. The films resistance is rather sensitive to the presence of NO2and O3impurity in air at lower operating temperatures in the range of 30-60°C.


2012 ◽  
Vol 260-261 ◽  
pp. 1041-1046 ◽  
Author(s):  
Shi Ye Feng ◽  
Pan Gao ◽  
Chang Qing Dong ◽  
Qiang Lu

A series of manganese-cerium oxide support titanium oxide with different Fe/Ti, Ce/Ti ratio were investigated for selectivity catalytic reduction of NO low at temperature with NH3 as a reducing agent. The catalysts base Mn/TiO2were prepared by sol-gel. The effect of amount of Ce and Fe oxide on the NO conversion of Mn/TiO22was studied. X-ray diffraction (XRD), temperature program desorption (TPD) were carried out. It was known that cerium oxides and iron oxide promoted preformance of Mn/TiO2 for low temperature. because Lewis is mainly take important role in the reaction for low temperature.


2003 ◽  
Vol 36 (6) ◽  
pp. 1411-1416 ◽  
Author(s):  
Z. K. Heiba ◽  
Y. Akin ◽  
W. Sigmund ◽  
Y. S. Hascicek

Polycrystalline samples of (Eu1−xYbx)2O3(x= 0.0, 0.1, 0.2, 0.5, 0.8, 0.9 and 1.0) were synthesized by a sol–gel process. X-ray diffraction data were collected and the crystal structures were refined by the Rietveld method. All samples are found to have the same crystal system and formed solid solutions over the whole range ofx. The lattice parameters are found to vary linearly with the compositionx. The cationic distribution over the two non-equivalent sites 8band 24dof the space group Ia{\bar 3} is found to be random in the range 0.0 <x≤ 0.5 and preferential in the range 0.5 <x≤ 1.0. Replacing Eu3+and Yb3+by each other introduces slight changes in the atomic coordinates. Crystallite size and microstrain analysis are performed on single and multiple orders for each sample using profile fitting and the Warren–Averbach method. The obtained values of microstrain are correlated with the distribution of the rare earth (RE) ions over the two cationic sites of the structure. The average crystallite size ranges from 35 to 96 nm and the mean-square strain from 0.052 to 0.225 × 10−2.


2005 ◽  
Vol 20 (4) ◽  
pp. 306-310 ◽  
Author(s):  
M. S. Haluska ◽  
I. C. Dragomir ◽  
K. H. Sandhage ◽  
R. L. Snyder

The nanostructural features of the gas-phase displacement reaction 2Mg(g)+SiO2→2MgO(s)+{Si}, where SiO2 is in the form of diatom shells were studied via X-ray diffraction and Fourier methods. Diatomaceous powder heated to 700 °C in a sealed graphite cell in the presence of Mg vapor formed MgO via a displacement reaction. Warren-Averbach analysis performed on samples reacted for different times showed an initial sharp MgO grain size distribution which broadened with time. New MgO crystallization was shown to occur until about 60 min, whereafter only MgO grain growth occurred. Median MgO crystallite size increased from 7.5 to 24.9 nm during this period, whereas microstrain decreased dramatically past 60 min annealing time.


2011 ◽  
Vol 347-353 ◽  
pp. 3662-3665 ◽  
Author(s):  
Yu Hui Wang ◽  
Zhe Li ◽  
Kai Zhu ◽  
Gang Li ◽  
Ying Jin Wei ◽  
...  

The Li[Li0.2Co0.4Mn0.4]O2 cathode material was prepared by a sol-gel method. Combinative X-ray diffraction (XRD) studies showed that the material was a solid solution of LiCoO2 and Li2MnO3. The material showed a reversible discharge capacity of 155.0 mAhg−1 at -20 °C, which is smaller than that at room temperature (245.5 mAhg−1). However, the sample exhibited capacity retention of 96.3 % at -20 °C, only 74.2 % at 25 °C. The good electrochemical cycle performance at low temperature was due to the inexistence of Mn3+ in the material.


2007 ◽  
Vol 121-123 ◽  
pp. 53-56 ◽  
Author(s):  
J. Azadmanjiri ◽  
Hojjatollah K. Salehani ◽  
A. Dehghan Hamedan ◽  
M. Sadeghi

In this work, high purity BaTiO3 (BT) nano-powders by a sol-gel process was prepared with Ba(NO3)2 and Ti(C4H9O)4 materials in order to acquire uniform size grains. The effects of the crystallinity, microstructure of BT nano-powders calcined at different temperatures and dielectric properties of the ceramics were investigated by XRD, SEM and impedance analyzer, respectively. Scanning electron microscopy and X-ray diffraction investigation revealed cubic plates and crystallite size. The results revealed that crystallite size and calcination temperature of BT and influence on the dielectric constant.


2007 ◽  
Vol 130 ◽  
pp. 203-206 ◽  
Author(s):  
Grzegorz Dercz ◽  
Lucjan Pająk ◽  
Krystian Prusik ◽  
Roman Pielaszek ◽  
Janusz J. Malinowski ◽  
...  

Wet gel obtained by sol-gel technique was dried in supercritical CO2 to prepare hydrated form of magnesium oxide. Calcination at 723 K under vacuum yielded nanocrystalline MgO aerogel. Structure studies were performed by X-ray diffraction, scanning and transmission electron microcopies. Electron microscopy images reveal rough, unfolded and ramified structure of solid skeleton. Specific surface area SBET was equal to 238 m2/g. X-ray pattern reveals the broadened diffraction lines of periclase, the only crystalline form of magnesium oxide. The gamma crystallite size distribution was determined using FW 5 4 / 5 1 M method proposed by R. Pielaszek. The obtained values of <R> and σ (measure of polydispersity) of particle size parameters are equal to 6.5 nm and 1.8 nm, respectively, whereas the average crystallite size estimated by Williamson-Hall procedure was equal to 6.0 nm. The obtained at Rietveld refinement Rwp, and S fitting parameters equal to 6.62% and 1.77, respectively, seem to be satisfactory due to the nanosize of MgO crystallites and because of the presence of amorphous phase.


2011 ◽  
Vol 412 ◽  
pp. 13-16
Author(s):  
Yan Xiang Wang ◽  
Jian Sun ◽  
Xiao Yan Li

The shell-core structures of SiO2/ZnO nanopowders were obtained by simple two-step technique based on low-temperature crystallization from liquid phase. The influence of molar ratio of SiO2/ZnO in the reaction mixture on the morphology of obtained SiO2/ZnO nanopowders was studied. Crystalline structure of SiO2/ZnO nanocrystals obtained was proofed by the X-ray diffraction data. The average diameter of SiO2/ZnO nanocrystals was about 80~100nm according to FSEM and TEM data. It is shown that SiO2 components on the surface prevent the thermal interfusion of ZnO particles. Morphology and diameter of raw ZnO, SiO2/ZnO nanopowders prepared with molar ratio of SiO2/ZnO 0.1, 0.2, and 0.5 were almost same. When molar ratio of SiO2/ZnO was 0.5, ZnO core was coated with SiO2, and the thickness of shell was about 10nm. At the same time, SiO2 nanocrystals also formed the islands structure.


Sign in / Sign up

Export Citation Format

Share Document