Fabrication and Stability of CoAl2O4 Ceramic Pigment for 3D Printing

2017 ◽  
Vol 898 ◽  
pp. 1935-1939 ◽  
Author(s):  
Yuan Song ◽  
Yuan Lin Zheng ◽  
Yu Fei Tang ◽  
Hai Bing Yang

Ceramic pigment is the key component of the ink color in the 3D printing process of ceramic products. The color performance and stability of ceramic pigments after calcination still need to be improved. In the present study the cobalt aluminate (CoAl2O4) ceramic pigment powders were fabricated by sol-gel method. The effects of fabrication processes on color properties of CoAl2O4 ceramic pigments were investigated. The compositions and morphologies of CoAl2O4 ceramic pigment powders were characterized. The stability of CoAl2O4 ceramic pigments was discussed. The results showed that the CoAl2O4 ceramic pigment with high chroma was obtained at calcination temperature of 1200°C and the Co/Al ratio is 1:3. The Zeta potential of the fabricated CoAl2O4 ceramic pigment powders in aqueous solution was-66.2 mV, which represented good dispersion stability. The chroma and saturation of the CoAl2O4 ceramic pigment increased owing to that the oxide solid solution in the spinel structure increased after being sintered at 1300 oC.

2012 ◽  
Vol 507 ◽  
pp. 73-77 ◽  
Author(s):  
Mario Borlaf ◽  
Maria Teresa Colomer ◽  
Howard Titzel ◽  
James H. Dickerson ◽  
Rodrigo Moreno

Colloidal sol-gel is a common method used for the preparation of stable and homogeneous sols and thin films. The nanoparticulate sols can be easily deposited by EPD, which is a versatile technique for producing denser and thicker coatings than those produced by other techniques like dipping. A complete characterization of the sols, such as colloidal stability and electrophoretic mobility, which can be determined through zeta potential measurements, as well as the influence of deflocculants in the surface properties, is needed before using electrophoretic deposition. In this work, we have prepared sols of TiO2with an alkoxide:water molar ratio of 50:1 and Eu (III) doped-TiO2(2 mole % Eu (III)) using as precursors titanium (IV) isopropoxide and europium (III) acetate hydrate, respectively. The stability of the particulate sols was studied in terms of conductivity, zeta potential and viscosity evolution. Anatase stable sols, after peptization and without the use of any additive, were deposited on stainless steel substrates by electrophoretic deposition under both constant current and constant voltage conditions. Using different intensities and deposition times we have obtained thin films with different features (thicknesses and morphology) and different optical properties. The presence of europium (III) increases particle size, viscosity and peptization time and decreases the band gap of TiO2.


2006 ◽  
Vol 317-318 ◽  
pp. 611-614 ◽  
Author(s):  
Hao Wang ◽  
Tohru Sekino ◽  
Takafumi Kusunose ◽  
Tadachika Nakayama ◽  
Koichi Niihara

Mullite-based iron nanocomposites were prepared by the reduction of a mullite-iron oxide solid solution and successive hot pressing. The solid solution was obtained from the heat treatment of diphasic gel by sol-gel method. Some of the α-iron nanoparticles have an intra-granular structure just after reduction. Mechanical properties are strongly affected by the content of iron. Low iron content is beneficial to strengthening while high iron content can improve the fracture toughness. Furthermore, the nanocomposites also behave ferromagnetic properties at room temperature.


Author(s):  
Г.И. Мальцев

Исследование стабильности бетулина методом определения электрокинетического потенциала. На сегодняшний день бетулин интересен в области медицины, косметики и пищевой промышленности, ведь он обладает огромным спектром биологических действий. Из него можно получить производные, которые, в свою очередь, имеют определенное хорошо выраженное действие и используются для производства различных медикаментов. И чтобы интенсифицировать процесс очистки и фильтрования бетулина для экономии времени и затрат на энергию, необходимо узнать его заряд коллоидной частицы и стабильность в водном растворе. Для этого было проведено определение электрокинетического потенциала. Найден ξ-потенциал бетулина в водном растворе, который показал, что с увеличением концентрации водного раствора бетулина вероятность разрушения дисперсии и возможность образования хлопьев при добавлении коагулянта или флогулянта повышаются. Определен заряд поверхности коллоидной частицы бетулина. Investigation of the stability of betulin by the method of determining the electrokinetic potential.Today betulin is interesting in the field of medicine, cosmetics and food industry, because it has a huge range of biological actions. From it, you can get derivatives, which in turn have a certain well-defined effect and are used for the production of various medicines. In order to intensify the process of cleaning and filtering betulin to save time and energy costs, we need to know its colloidal particle charge and stability in an aqueous solution. To do this, we conducted a method for determining the electrokinetic potential. we determined the zeta potential of betulin in an aqueous solution, which showed that with an increase in the concentration of betulin in water, the probability of destruction of the dispersion and the possibility of flocculation when adding a coagulant or flogulant increases. We determined the surface charge of a colloidal betulin particle.


2019 ◽  
Vol 128 (1B) ◽  
pp. 13
Author(s):  
Trần Ngọc Tuyền ◽  
Nguyễn Đức Vũ Quyên ◽  
Trần Bảo Lâm

In the present paper, the ceramic pigments of Fe<sub>x</sub>Zn<sub>1-x</sub>Cr<sub>2</sub>O<sub>4 </sub>(x = 0 ¸ 1) were synthesized by the starch assisted sol-gel method. The resulting pigments were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), CIE L*a*b* color measurement. The results showed that the preparation pigments of Fe<sub>x</sub>Zn<sub>1-x</sub>Cr<sub>2</sub>O<sub>4</sub>, calcinated at 1100<sup>o</sup>C for 60 minutes, obtained phases of spinel ACr<sub>2</sub>O<sub>4</sub> (A: Zn, Fe) and perovskite FeCrO<sub>3</sub> with excellent crystallinity. The brown color intensity was gradually increased as a function of the amount of substituted Fe<sup>2+</sup> ion. The achieved pigments met industrial requirements in terms of physicochemical characteristics.


2007 ◽  
Vol 280-283 ◽  
pp. 123-126 ◽  
Author(s):  
Chang Shu Xiang ◽  
Xiao Mei Shi ◽  
Yu Bai Pan ◽  
Jing Kun Guo

Stable and disperse carbon nanotubes (CNTs) aqueous solution was prepared by using cetyltrimethylammonium bromide (C16TMAB) as dispersing agent and zeta potential of CNTs solution were measured to quantitatively characterize the stability of CNTs in C16TMAB aqueous solution. The CNTs /SiO2 composites were fabricated with composite powders synthesized by rapid Sol-gel method and sintered by hot-pressing technique. The electric and dielectric properties of the composites were measured and the microstructure of CNTs and composites were investigated by Field emission scanning electron microscope (FSEM) and transmission electron microscopy (TEM). The mechanisms had been investigated to explain the effect of the CNT compositions on the electric and dielectric properties of CNTs /SiO2 composites in this paper.


Author(s):  
A.M. Zetty Akhtar ◽  
M.M. Rahman ◽  
K. Kadirgama ◽  
M.A. Maleque

This paper presents the findings of the stability, thermal conductivity and viscosity of CNTs (doped with 10 wt% graphene)- TiO2 hybrid nanofluids under various concentrations. While the usage of cutting fluid in machining operation is necessary for removing the heat generated at the cutting zone, the excessive use of it could lead to environmental and health issue to the operators. Therefore, the minimum quantity lubrication (MQL) to replace the conventional flooding was introduced. The MQL method minimises the usage of cutting fluid as a step to achieve a cleaner environment and sustainable machining. However, the low thermal conductivity of the base fluid in the MQL system caused the insufficient removal of heat generated in the cutting zone. Addition of nanoparticles to the base fluid was then introduced to enhance the performance of cutting fluids. The ethylene glycol used as the base fluid, titanium dioxide (TiO2) and carbon nanotubes (CNTs) nanoparticle mixed to produce nanofluids with concentrations of 0.02 to 0.1 wt.% with an interval of 0.02 wt%. The mixing ratio of TiO2: CNTs was 90:10 and ratio of SDBS (surfactant): CNTs was 10:1. The stability of nanofluid checked using observation method and zeta potential analysis. The thermal conductivity and viscosity of suspension were measured at a temperature range between 30˚C to 70˚C (with increment of 10˚C) to determine the relationship between concentration and temperature on nanofluid’s thermal physical properties. Based on the results obtained, zeta potential value for nanofluid range from -50 to -70 mV indicates a good stability of the suspension. Thermal conductivity of nanofluid increases as an increase of temperature and enhancement ratio is within the range of 1.51 to 4.53 compared to the base fluid. Meanwhile, the viscosity of nanofluid shows decrements with an increase of the temperature remarks significant advantage in pumping power. The developed nanofluid in this study found to be stable with enhanced thermal conductivity and decrease in viscosity, which at once make it possible to be use as nanolubricant in machining operation.


2000 ◽  
Vol 628 ◽  
Author(s):  
Guang-Way Jang ◽  
Ren-Jye Wu ◽  
Yuung-Ching Sheen ◽  
Ya-Hui Lin ◽  
Chi-Jung Chang

This work successfully prepared an UV curable organic-inorganic hybrid material consisting of organic modified colloidal silica. Applications of UV curable organic-inorganic hybrid materials include abrasion resistant coatings, photo-patternable thin films and waveguides. Colloidal silica containing reactive functional groups were also prepared by reacting organic silane and tetraethyl orthosilicate (TEOS) using sol-gel process. In addition, the efficiency of grafting organic moiety onto silica nanoparticles was investigated by applying TGA and FTIR techniques. Experimental results indicated a strong interdependence between surface modification efficiency and solution pH. Acrylate-SiO2 hybrid formation could result in a shifting of thermal degradation temperature of organic component from about 200°C to near 400°C. In addition, the stability of organic modified colloidal silica in UV curable formula and the physical properties of resulting coatings were discussed. Furthermore, the morphology of organic modified colloidal silica was investigated by performing TEM and SEM studies‥


2020 ◽  
pp. 15-20
Author(s):  
Ersin Yucel ◽  
Mine Yucel

In this study, the usage of the peppermint (Mentha piperita) for extracting the metal ions [Mg (II), Cr (II), Ni (II), Cu (II), Zn (II), Cd (II), Pb (II)] that exist at water was investigated. In order to analyze the stability properties, Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms were used at removing the metal ions and the highest correlation coefficients (R2) were obtained at Langmuir isotherm. Therefore, it is seen that the Langmuir model is more proper than the Freundlich model. However, it was found that the correlation coefficients of removing Ni and Cd is higher at Freundlich model than Langmuir and low at Dubinin-Radushkevich isotherm. It is established that the biosorption amount increase depends on the increase of biosorbent and it can be achieved high efficiency (95%) even with small amount (0.6 mg, peppermint extract) at lead ions. It is also determined that the peppermint extracted that is used at this study shows high biosorption capacity for metal ions and can be used for immobilization of metals from polluted areas.


Gels ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 36
Author(s):  
Emanuele Mauri ◽  
Sara Maria Giannitelli ◽  
Marcella Trombetta ◽  
Alberto Rainer

Nanogels represent an innovative platform for tunable drug release and targeted therapy in several biomedical applications, ranging from cancer to neurological disorders. The design of these nanocarriers is a pivotal topic investigated by the researchers over the years, with the aim to optimize the procedures and provide advanced nanomaterials. Chemical reactions, physical interactions and the developments of engineered devices are the three main areas explored to overcome the shortcomings of the traditional nanofabrication approaches. This review proposes a focus on the current techniques used in nanogel design, highlighting the upgrades in physico-chemical methodologies, microfluidics and 3D printing. Polymers and biomolecules can be combined to produce ad hoc nanonetworks according to the final curative aims, preserving the criteria of biocompatibility and biodegradability. Controlled polymerization, interfacial reactions, sol-gel transition, manipulation of the fluids at the nanoscale, lab-on-a-chip technology and 3D printing are the leading strategies to lean on in the next future and offer new solutions to the critical healthcare scenarios.


Sign in / Sign up

Export Citation Format

Share Document