Study of RIN-Insulation Mechanical Properties for High Voltage Inputs

2021 ◽  
Vol 316 ◽  
pp. 942-948
Author(s):  
Alexander Demidov ◽  
Myrzamamat Karimbekov ◽  
Regina Rodyakina

This paper presents the results of mechanical properties study for samples of RIN-insulation material (Resin Impregnated Nonwoven – non-woven resin impregnated fabric) for high-voltage inputs at various temperatures, determined by three-point bending tests, impact strength tests and tensile tests with registration of test diagrams. The mechanical properties of RIN-insulation, which ensure working ability of the whole construction of high-voltage inputs, operating in difficult climatic conditions, are determined.

Author(s):  
O.A. Pashkov

: An experimental and theoretical study of the effect of polymer coatings on an epoxy-polyester base on the mechanical properties of samples in the form of steel plates has been carried out. It is shown that, despite the fact that the thickness of the coatings is only 100 μm, they have a significant effect on the mechanical properties of plates up to 1,5 mm thick, leading to a decrease in Young's modulus, tensile strength and ultimate deformations of the samples. It was shown that the elastic modulus of the coated plate cannot be determined unambiguously from tests for central tension and three-point bending. In bending tests, there is a more significant reduction in plate stiffness compared to tensile tests. This effect is confirmed by calculations within the framework of classical models of the theory of elasticity.


2014 ◽  
Vol 601 ◽  
pp. 29-32
Author(s):  
Dan Andrei Serban ◽  
Tudor Voiconi ◽  
Liviu Marsavina ◽  
Vadim V. Silberschmidt

In recent years, advances in material testing equipment caused the determination of mechanical properties by means of three-point bending tests to lose ground in detriment to more accurate tensile tests. However, if components undergo bending deformation in service, the identification of the materials flexural behaviour is essential. The investigated material is a thermoplastic polymer, test specimens being cut in prismatic shapes from injected sheets, which present a variation in properties due to cooling conditions. This paper presents results of three-point bending tests with emphasis on the influence of strain rate and anisotropy on flexural strength and chord modulus. Results show an increase in flexural properties with strain rate and a considerable influence of anisotropy on mechanical properties.


2019 ◽  
Vol 889 ◽  
pp. 289-293
Author(s):  
Iva Petríková ◽  
Bohdana Marvalová ◽  
Jiří Lampa

The tensile and bending properties of composite materials with geopolymer matrix reinforced by layers of basalt plain weave fabric were investigated experimentally. We present the results of the quasi-static tensile tests and the quasi-static and cyclic three-point bending tests. The composite panels were made by hand laying with subsequent vacuuming. The plates were stayed in a compression press and left in a compressed state for a month. After 5 months the samples were made from the plates and subjected to tests. The material behaves as linear almost to the failure, which occurred at tensions of about 100 MPa. The elastic modulus is between 6000 and 7000 MPa.


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5720 ◽  
Author(s):  
Vicente Colomer-Romero ◽  
Dante Rogiest ◽  
Juan Antonio García-Manrique ◽  
Jose Enrique Crespo

Bio- and green composites are mainly used in non-structural automotive elements like interior panels and vehicle underpanels. Currently, the use of biocomposites as a worthy alternative to glass fibre-reinforced plastics (GFRPs) in structural applications still needs to be fully evaluated. In the current study, the development of a suited biocomposites started with a thorough review of the available raw materials, including both reinforcement fibres and matrix materials. Based on its specific properties, hemp appeared to be a very suitable fibre. A similar analysis was conducted for the commercially available biobased matrix materials. Greenpoxy 55 (with a biocontent of 55%) and Super Sap 100 (with a biocontent of 37%) were selected and compared with a standard epoxy resin. Tensile and three-point bending tests were conducted to characterise the hemp-based biocomposite.


Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3158 ◽  
Author(s):  
Santiago Cano ◽  
Tanja Lube ◽  
Philipp Huber ◽  
Alberto Gallego ◽  
Juan Alfonso Naranjo ◽  
...  

The fused filament fabrication (FFF) of ceramics enables the additive manufacturing of components with complex geometries for many applications like tooling or prototyping. Nevertheless, due to the many factors involved in the process, it is difficult to separate the effect of the different parameters on the final properties of the FFF parts, which hinders the expansion of the technology. In this paper, the effect of the fill pattern used during FFF on the defects and the mechanical properties of zirconia components is evaluated. The zirconia-filled filaments were produced from scratch, characterized by different methods and used in the FFF of bending bars with infill orientations of 0°, ±45° and 90° with respect to the longest dimension of the specimens. Three-point bending tests were conducted on the specimens with the side in contact with the build platform under tensile loads. Next, the defects were identified with cuts in different sections. During the shaping by FFF, pores appeared inside the extruded roads due to binder degradation and or moisture evaporation. The changes in the fill pattern resulted in different types of porosity and defects in the first layer, with the latter leading to earlier fracture of the components. Due to these variations, the specimens with the 0° infill orientation had the lowest porosity and the highest bending strength, followed by the specimens with ±45° infill orientation and finally by those with 90° infill orientation.


1999 ◽  
Vol 115 (4) ◽  
pp. 390-395 ◽  
Author(s):  
Hirokazu Nakano ◽  
Kazuro Satoh ◽  
Robert Norris ◽  
Tomoaki Jin ◽  
Tetsuya Kamegai ◽  
...  

Author(s):  
Haris Stamatopoulos ◽  
Francesco Mirko Massaro ◽  
Jalal Qazi

AbstractAt present, the mechanical properties of laterally loaded threaded fasteners with large diameters embedded in timber elements remain unknown. An experimental study of laterally loaded threaded rods with wood screw threads embedded perpendicular to grain in softwood elements (spruce and pine glulam and spruce LVL) is presented in this paper. Embedment tests with the load acting parallel and perpendicular to grain were carried out and the embedment strength and stiffness were quantified. For some test series, the experimental embedment strengths were lower compared to the predictions according to Eurocode 5 in terms of both mean and characteristic values. This finding indicates that the predictions by Eurocode 5 are not always conservative. To investigate the effect of the thread, additional series of embedment tests were carried out with smooth dowels featuring a diameter approximately equal to the core diameter of the threaded rods. Finally, the yielding moment of threaded rods was quantified based on a series of three-point bending tests of threaded rods. The experimentally determined yielding moment was significantly higher than the prediction of Eurocode 5.


2010 ◽  
Vol 443 ◽  
pp. 189-194 ◽  
Author(s):  
Dae Yong Kim ◽  
Bum Kyu Hwang ◽  
Young Seon Lee ◽  
Sang Woo Kim ◽  
Young Hoon Moon

The purpose of this work is to experimentally investigate the effect of annealing treatment on the formability and springback at room temperature for magnesium alloy AZ31 sheets, which were produced by rolling through reversible warm mill after twin roll strip casting. Microstructure evolutions were investigated using OM after annealing at temperature raging from 350°C to 450°C. Tensile tests at room temperature were performed to show the influence of annealing treatment on mechanical properties. In order to evaluate the formability in stamping processes, the Erichsen cupping tests were carried out and the Erichsen number were measured. As for springback, the V shaped air bending tests were achieved and the angle changes after springback were collected. The experimental results showed that Erichsen numbers increased by the annealing treatment, while springback angle decreased.


2012 ◽  
Vol 567 ◽  
pp. 146-149 ◽  
Author(s):  
Xue Mei Fan ◽  
Jian Feng Wang ◽  
Cheng Jin Duan ◽  
Xiang Xin Xia ◽  
Zhao Hui Wang

In order to analyze the mechanical properties of Carbon/epoxy facings-Aluminum honeycomb sandwich structure, we simulated panels of different layers and core thickness using ABAQUS finite element analysis program. And three-point bending tests and shear tests were made on the same panels using electronic universal testing machine. In addition, we also made the same three-point bending tests on steel tubes to get a comparison with honeycomb sandwich panels. It could be seen that, the simulated results were basically identified with experimental results. The results indicated that core thickness played an important role in the panels’ bulking modulus, and number of carbon fiber layers decided the shear strength. As a whole, honeycomb sandwich structure was suitable for use in the car body with good mechanical properties under premise of lighter.


Sign in / Sign up

Export Citation Format

Share Document