Feasibility Study for Onboard Marine Debris Gathering and Recycling

2017 ◽  
Vol 51 (1) ◽  
pp. 32-39
Author(s):  
Hee Jin Kang ◽  
Tae-Byung Chun ◽  
Haeseong Ahn ◽  
Geun-Tae Yim

AbstractIt is well known that approximately 90% of all marine debris consists of reusable plastics. Small plastic particles are easily swallowed and disturb marine ecosystems. However, cleaning up marine debris is difficult because of its economic feasibility. Though there are many proven land-based recycling processes available, the high costs of gathering marine debris and transporting it adds to marine debris-related problems. Marine debris cleanup is challenging despite various studies that point to its importance. Therefore, we discuss a recycling chain that concerns gathering, transporting, classifying, recycling, and disposing of marine debris on the ocean. In this study, cost-effective ways of cleaning up large-scale marine litter such as garbage patches are studied. As plastics generate toxic materials during recycling and disposing, this study focuses on how to apply technological potential and meets the required rules and regulations for establishing an economically and environmentally friendly recycling chain for marine debris. In this study, a new type of marine platform is also studied and suggested for a low-energy consumption process and to recycle this debris into oil, gas, and raw materials.

Author(s):  
Y Sai Subhash Reddy ◽  
◽  
Sri Krishna Borra ◽  
Koye Sai Vishnu Vamsi ◽  
Nandipati Jaswanth Sai ◽  
...  

COVID-19 is a life-threatening virus taking the lives of thousands of people every day throughout the world. Even though many organizations and companies worked hard and developed vaccines, production of vaccines at large scale to meet today’s demand is not an easy job as there is a shortage of raw materials and cases are rising steeply. Inoculation of every individual cannot be achieved in the foreseeable future. Even the government is vaccinating people in a phased manner prioritizing older people and people who are more vulnerable to the virus. The main objective of this work is to provide an optimum solution for COVID-19 indoor safety for industries, offices, and commercial places where footfall is high. This work focus on automation of temperature sensing and mask detection which is usually carried out by a person. Elimination of human intervention reduces the risk of contraction and spreading and avoids mistakes due to human negligence. Continuous monitoring of a person is not possible and there is no guarantee that a person who is entering a place wearing a mask puts it on until he leaves it. This research intends to implement mask detection along with surveillance which is cost effective as it does not require additional hardware setup.


2018 ◽  
Vol 21 (1) ◽  
pp. 15-23
Author(s):  
Thuy-Duy Thi Nguyen ◽  
Phuong Tuyet Nguyen ◽  
Phuong Hoang Tran

This research aims to develop a new type of electrolyte for dye-sensitized solar cells (DSCs) which can be produced in cost-effective and large scale. DSCs using deep eutectic solvents (DESs) mixed with ethanol (50% w/w DES content), as an electrolyte medium, was studied herein for the first time. Ten types of DESs were synthesized and three among them were potential candidates for DSC electrolytes. Compared to toxic and volatile organic solvents, this mixed solvent is more eco-friendly and inexpensive. According to J-V curve measurements, DSCs that used DES-ethanol medium showed promising photovoltaic performance.


2021 ◽  
Vol 1 (1) ◽  
pp. 211-226
Author(s):  
T Annisa ◽  
◽  
A Azkiya ◽  
R N Fauzi ◽  
A B D Nandiyanto ◽  
...  

The aim of this study is to evaluate the economic feasibility of manufacturing hydroxyapatite nanoparticles from eggshell waste. The economic analysis perspective is carried out by calculating various economic parameters, namely gross profit margin (GPM), payback period (PBP), break event point (BEP), internal rate return (IRR), creating net present value (CNPV), return on investment ( ROI) and profitability index (PI). The results show that the production of hydroxyapatite nanoparticles from eggshell waste is prospective. Technical analysis to produce 30,150 Kg of hydroxyapatite per year shows the total cost of equipment purchased is Rp. 230,580,000.00, and the total cost of raw materials is Rp. 890,235,720.00. The profit obtained from the sale of the product is Rp. 4,520,803,500.00/year. Within 20 years of the construction of this project, using eggshells as a raw material for production can reduce the accumulation of eggshell waste. This project can compete with PBP capital market standards due to the short return on investment of around 3 years. To ensure feasibility, the project is estimated from ideal to worst case conditions in production, including labor, sales, raw materials, utilities, as well as external conditions (taxes and subsidiaries). The benefits of this research are that it can provide information on the economic feasibility of manufacturing hydroxyapatite nanoparticles on a large scale, and can optimize/develop projects for further investigation.


2018 ◽  
Vol 12 (2) ◽  
pp. 25-32
Author(s):  
Amalia-Gianina Străteanu ◽  
Simona Nicoleta Stan

Abstract Eco-efficiency is based on environmental, social and economic principles, focusing not only on the use of fewer natural resources (raw materials) and energy but also on the cost-effective use of new technologies (eco-innovation) for the same volume of production and generation of low waste (efficient production). Agro-ecosystems globally, once with the development of the pesticide industry (plant protection products) and under the influence of aggressive marketing, have been based on the large-scale application of big amounts (perhaps too high) of pesticides. Many of the pesticides used in agriculture have a high persistence and degrade very slowly, which leads to the soil, water and even air pollution, with negative effects on plants, animals and, implicitly, humans. If these are used in short term and at low concentrations, pesticides can have beneficial effects (crop protection and their conservation and prevention of vector-borne disease) but in large quantities and applied over a long period of time can be toxic to humans and with a negative impact on the environment and ecosystems (degrading essential ecosystem services).


2020 ◽  
Vol 21 (1) ◽  
pp. 58-64
Author(s):  
Lali Gurchumelia ◽  
Murman Tsarakhov ◽  
Salome Tkemaladze ◽  
Feliks Bejanov ◽  
Lasha Tkemaladze

The main goal of this research is the fabrication of halogen free, environmentally friendly fire-extinguishing powders using local mineral raw materials and the development of technological processes for producing highly efficient fire-extinguishing foam-suspensions on the basis of the produced powders. Fire-extinguishing powders are made by mechanical treatment and mixing of raw materials: zeolite, clay shale, perlite and ammophos. The process does not need introduction of expensive, halogen-containing, hydrophobizators and ensures the cost-effective production of fire-extinguishing powders. The obtained fire-extinguishing powders are characterized by high performance properties, high fire-extinguishing capacity and coefficient of atomic oxygen recombination. Thus, they are characterized both by homogeneous and heterogeneous inhibition of combustion processes. The efficiency of the produced powders is not inferior to that of standard powders of common production. In addition, in contrast to their traditional analogs they are halogen free, environmentally friendly and cheaper (1.2-2 times cheaper). The obtained powders, unlike the ones of conventional production, have good compatibility with water and foam. Our foam-suspensions are prepared just by mechanical mixing of fire-extinguishing powders with water and surface-active substances – foamers. The process does not require chemical treatment of materials. Thus, the developed technology is simple and cost-effective. The foam-suspensions produced on the basis of the obtained powders have higher heat capacity, permeability, wetting effect like water and foam and unlike them, they allow for homogeneous as well as heterogeneous inhibition of the burning process. Thus, the so produced foam-suspensions will have higher extinguishing effect than water, foams or powders, taken separately. Based on the above, it can be suggested that the produced powders can be used for extinguishing all types of fires, including large-scale ones in a combination with water and foams. Chemical Engineering Research Bulletin 21(2019) 58-64


2004 ◽  
Vol 5 (2) ◽  
pp. 239-242 ◽  
Author(s):  
P. H. Flore

AbstractIf vaccines are to reliably prevent disease, they must be developed, produced and quality-controlled according to very strict regulations and procedures. Veterinary viral vaccine registrations are governed by different rules in different countries, but these rules all emphasize that the quality of the raw materials—the cells, eggs, animals or plants that are used in production—need to be carefully controlled. The veterinary vaccine business is also very cost-conscious. Emphasis over the last 5–10 years has therefore been to develop culture systems that minimize labor and sterility problems and thus provide for reliable and cost-effective production. Implementing these often more complex systems in a production environment takes considerable effort, first in scale-up trials and further down the line in convincing production personnel to change their familiar system for something new and possibly untried. To complete scale-up trials successfully, it is absolutely necessary to understand the biochemistry of the cells and the influence of the virus on the cells under scale-up and later production conditions. Once a viral product can be produced on a large scale, it is imperative that the quality of the end-product is controlled in an intelligent way. One needs to know whether the end-product performs in the animal as was intended during its conception in the research and development department. The development of the appropriate tests to demonstrate this plays an important role in the successful development of a vaccine.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kai Wang ◽  
Qingyong Ren ◽  
Zhenqi Gu ◽  
Chaomin Duan ◽  
Jinzhu Wang ◽  
...  

AbstractLi-ion-conducting chloride solid electrolytes receive considerable attention due to their physicochemical characteristics such as high ionic conductivity, deformability and oxidative stability. However, the raw materials are expensive, and large-scale use of this class of inorganic superionic conductors seems unlikely. Here, a cost-effective chloride solid electrolyte, Li2ZrCl6, is reported. Its raw materials are several orders of magnitude cheaper than those for the state-of-the-art chloride solid electrolytes, but high ionic conductivity (0.81 mS cm–1 at room temperature), deformability, and compatibility with 4V-class cathodes are still simultaneously achieved in Li2ZrCl6. Moreover, Li2ZrCl6 demonstrates a humidity tolerance with no sign of moisture uptake or conductivity degradation after exposure to an atmosphere with 5% relative humidity. By combining Li2ZrCl6 with the Li-In anode and the single-crystal LiNi0.8Mn0.1Co0.1O2 cathode, we report a room-temperature all-solid-state cell with a stable specific capacity of about 150 mAh g–1 for 200 cycles at 200 mA g–1.


2020 ◽  
Vol 11 (2) ◽  
pp. 73-82
Author(s):  
А. Trubnikova ◽  
О. Chabanova ◽  
S. Bondar ◽  
Т. Sharakhmatova ◽  
Т. Nedobijchuk

Optimization of the formulation of synbiotic yogurt ice cream low-lactose using lactose-free protein concentrate of buttermilk and yogurt with low lactose content is the goal of expanding the range of low-lactose dairy products and improving the functional and health properties of ice cream. Low-lactose ice cream formulation optimization was performed using a gradient numerical method, namely conjugated gradients (Conjugate Gradient). The optimization algorithm is implemented in Mathcad. An array of data with a set of indicators for the choice of a rational ratio of lactose-free protein concentrate of buttermilk and yogurt base and inulin content for ice cream mixtures is presented. The influence of the ratio of the main components of the mixtures on the foaming ability, which determines the quality of the finished product, has been studied. An important indicator is taken into account - the concentration factor of buttermilk, which is additionally purified from lactose by diafiltration. The graphic material presented in the work clearly demonstrates that the rational ratio of yogurt base and lactose-free protein concentrate of buttermilk, obtained by ultrafiltration with diafiltration purification at a concentration factor of FC = 5 is 40.6: 59.4. The content of additional components included in the recipe of a new type of ice cream is optimized in the work, the mass fractions of which were: inulin - 3.69 %; lactulose – 1 %; ginger - 0.3 %; citric acid - 0.15 %; stabilization system - 0.2 %. The chemical composition and quality indicators of the mixture for ice cream low-lactose synbiotic yogurt, consisting of raw materials in the optimal ratio, were determined. The lactose content in the test sample of the ice cream mixture was 0.99%, the antioxidant activity was 3.1 times higher than in the mixture for traditional yogurt ice cream. The most likely number of lactic acid microorganisms, CFU / cm3 is (2.8 ± 0.9) · 108, the number of bifidobacteria, CFU / cm3 is (2.5 ± 0.2) · 109. The results of the research will be implemented in dairy companies in the production of ice cream.


2014 ◽  
pp. 97-104 ◽  
Author(s):  
Electo Eduardo Silv Lora ◽  
Mateus Henrique Rocha ◽  
José Carlos Escobar Palacio ◽  
Osvaldo José Venturini ◽  
Maria Luiza Grillo Renó ◽  
...  

The aim of this paper is to discuss the major technological changes related to the implementation of large-scale cogeneration and biofuel production in the sugar and alcohol industry. The reduction of the process steam consumption, implementation of new alternatives in driving mills, the widespread practice of high steam parameters use in cogeneration facilities, the insertion of new technologies for biofuels production (hydrolysis and gasification), the energy conversion of sugarcane trash and vinasse, animal feed production, process integration and implementation of the biorefinery concept are considered. Another new paradigm consists in the wide spreading of sustainability studies of products and processes using the Life Cycle Assessment (LCA) and the implementation of sustainability indexes. Every approach to this issue has as an objective to increase the economic efficiency and the possibilities of the sugarcane as a main source of two basic raw materials: fibres and sugar. The paper briefly presents the concepts, indicators, state-of-the-art and perspectives of each of the referred issues.


2018 ◽  
Vol 27 (4) ◽  
pp. 096369351802700 ◽  
Author(s):  
Mehmet Önal ◽  
Gökdeniz Neşer

Glass reinforced polyester (GRP), as a thermoset polymer composites, dominates boat building industry with its several advantages such as high strength/weight ratio, cohesiveness, good resistance to environment. However, proper recovering and recycling of GRP boats is became a current environmental requirement that should be met by the related industry. In this study, to propose in a cost effective and environmentally friendly way, Life Cycle Assessment (LCA) has been carried out for six scenarios include two moulding methods (namely Hand Lay-up Method, HLM and Vacuum Infusion Method, VIM) and three End-of-Life (EoL) alternatives(namely Extruding, Incineration and Landfill) for a recreational boat's GRP hulls. A case study from raw materials purchasing phase to disposal/recycling stages has been established taking 11 m length GRP boat hull as the functional unit. Analysis show that in the production phase, the impacts are mainly due to the use of energy (electricity), transport and raw material manufacture. Largest differences between the methods considered (HLM and VIM) can be observed in the factors of marine aquatic ecotoxicity and eutrophication while the closest ones are abiotic depletion, ozon layer depletion and photochemical oxidation. The environmental impact of VIM is much higher than HLM due to its higher energy consumption while vacuum infusion method has lower risk than hand lay-up method in terms of occupational health by using less raw material (resin) in a closed mold. In the comparison of the three EoL techniques, the mechanical way of recycling (granule extruding) shows better environmental impacts except terrestrial ecotoxicity, photochemical oxidation and acidification. Among the EoL alternatives, landfill has the highest environmental impacts except ‘global warming potential’ and ‘human toxicity’ which are the highest in extrusion. The main cause of the impacts of landfill is the transportation needs between the EoL boats and the licenced landfill site. Although it has the higher impact on human toxicity, incineration is the second cleaner alternative of EoL techniques considered in this study. In fact that the similar trend has been observed both in production and EoL phases of the boat. It is obvious that using much more renewable energy mix and greener transportation alternative can reduce the overall impact of the all phases considerably.


Sign in / Sign up

Export Citation Format

Share Document