scholarly journals Novel Application of Laboratory Instrumentation Characterizes Mass Settling Dynamics of Oil-Mineral Aggregates (OMAs) and Oil-Mineral-Microbial Interactions

2018 ◽  
Vol 52 (6) ◽  
pp. 87-90
Author(s):  
Leiping Ye ◽  
Andrew J. Manning ◽  
Tian-Jian Hsu ◽  
Steve Morey ◽  
Eric P. Chassignet ◽  
...  

AbstractIt is reasonable to assume that microbes played an important role in determining the eventual fate of oil spilled during the 2010 Deepwater Horizon disaster, given that microbial activities in the Gulf of Mexico are significant and diverse. However, critical gaps exist in our knowledge of how microbes influence the biodegradation and accumulation of petroleum in the water column and in marine sediments of the deep ocean and the shelf. Ultimately, this limited understanding impedes the ability to forecast the fate of future oil spills, specifically the capacity of numerical models to simulate the transport and fate of petroleum under a variety of conditions and regimes.By synthesizing recent model developments and results from field- and laboratory-based microbial studies, the Consortium for Simulation of Oil-Microbial Interactions in the Ocean (CSOMIO) investigates (a) how microbial biodegradation influences accumulation of petroleum in the water column and in marine sediments and (b) how biodegradation can be influenced by environmental conditions and impact forecasts of potential future oil spills.

2014 ◽  
Vol 2014 (1) ◽  
pp. 266-282 ◽  
Author(s):  
Paul D. Panetta ◽  
Dale McElhone ◽  
Kyle Winfield ◽  
Grace Cartwright

ABSTRACT To help minimize the effects of oil spills on marine environments, chemical dispersants are used to disperse the oil in the water column so the oil can be consumed by naturally occurring bacteria. During the Deepwater Horizon incident, 1.1 million gallons of dispersant were injected directly into the flowing plume of oil and natural gas over 1500 meters deep. Dispersant's main effect is to decrease the surface tension at the oil-water interface causing the oil to form droplets smaller than ~70 microns so they can remain in the water column. Currently the efficacy of aerial applied dispersants on surface slicks is determined by measuring the droplet size decrease using a Laser In-Situ Scattering Transmissometer (LISST) or by detecting the oil in the water column using fluorometers. LISST instruments are limited to dilute mixtures, below ~500 ppm, because the LISST signal saturates for concentrated mixtures, and their windows can become occluded by oil and biofilms. Fluorometers only measure oil concentration; thus they cannot distinguish between naturally dispersed oil droplets, which can float back to the surface, from chemically dispersed oil droplets, which will remain in the water column to be naturally biodegraded. When gas is present as was the case in the Deepwater Horizon incident where it was estimated that the plume consisted of ~22% natural gas, the LISST cannot distinguish between oil droplets and gas bubbles and thus is not able to track the effectiveness of dispersants in the presence of gas. Acoustic measurements overcome the problems associated with the LISST and fluorometers and are ideal for applications subsurface near a blowout and for low ppm levels expected for surface slicks. One of the key features of the sound wave propagating through the water is the scattering at the interface between the water and object. In previous work we showed the proof of concept to measure the average oil droplet size using acoustic. We used the resonance behavior of the gas bubbles to identify them and separate their contribution to the measured acoustic scattering for various oil and dispersant combinations . We developed acoustic scattering and resonance measurements to track the size of oil droplets in the presence of gas during subsurface releases at SINTEF and in Ohmsett's large wave tank.


2008 ◽  
Vol 2008 (1) ◽  
pp. 633-638 ◽  
Author(s):  
Kenneth Lee ◽  
Zhengkai Li ◽  
Thomas King ◽  
Paul Kepkay ◽  
Michel C Boufadel ◽  
...  

ABSTRACT The interaction of chemical dispersants and suspended sediments with crude oil influences the fate and transport of oil spills in coastal waters. Recent wave tank studies have shown that dispersants facilitate the dissipation of oil droplets into the water column and reduces the particle size distribution of oil-mineral aggregates (OMAs). In this work, baffled flasks were used to carry out a controlled laboratory experimental study to define the effects of chemical dispersants and mineral fines on the partitioning of crude oil, major fractions of oil, and petroleum hydrocarbons from the surface to the bulk water column and the sediment phases. The dissolved and dispersed oil in the aqueous phase and OMA was characterized using an Ultraviolet Fluorescence Spectroscopy (UVFS). The distribution of major fractions of crude oil (the alkanes, aromatics, resins, and asphaltenes) was analyzed by thin layer chromatography coupled to flame ionized detection (TLC/FID); aliphatic and aromatic hydrocarbons were analyzed by gas chromatography and mass spectrometry (GC/MS). The results suggest that chemical dispersants enhanced the transfer of oil from the surface to the water column as dispersed oil, and promoted the formation of oil-mineral aggregates in the water column. Interaction of chemically dispersed oil with suspended particular materials needs to be considered in order to accurately assess the environmental risk associated with chemical oil dispersant use in particle-rich nearshore and esturine waters. The results from this study indicate that there is not necessarily an increase in sedimentation of oil in particle rich water when dispersants are applied.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1110
Author(s):  
Wei-Qin Liu ◽  
Luo-Nan Xiong ◽  
Guo-Wei Zhang ◽  
Meng Yang ◽  
Wei-Guo Wu ◽  
...  

The numerical hydroelastic method is used to study the structural response of a hexagon enclosed platform (HEP) of flexible module rigid connector (FMRC) structure that can provide life accommodation, ship berthing and marine supply for ships sailing in the deep ocean. Six trapezoidal floating structures constitute the HEP structure so that it is a symmetrical very large floating structure (VLFS). The HEP has the characteristics of large area and small depth, so its hydroelastic response is significant. Therefore, this paper studies the structural responses of a hexagon enclosed platform of FMRC structure in waves by means of a 3D potential-flow hydroelastic method based on modal superposition. Numerical models, including the hydrodynamic model, wet surface model and finite element method (FEM) model, are established, a rigid connection is simulated by many-point-contraction (MPC) and the number of wave cases is determined. The load and structural response of HEP are obtained and analyzed in all wave cases, and frequency-domain hydroelastic calculation and time-domain hydroelastic calculation are carried out. After obtaining a number of response amplitude operators (RAOs) for stress and time-domain stress histories, the mechanism of the HEP structure is compared and analyzed. This study is used to guide engineering design for enclosed-type ocean platforms.


2021 ◽  
Vol 9 (2) ◽  
pp. 190
Author(s):  
Jeffrey Short ◽  
Christine Voss ◽  
Maria Vozzo ◽  
Vincent Guillory ◽  
Harold Geiger ◽  
...  

Unprecedented recruitment of Gulf menhaden (Brevoortia patronus) followed the 2010 Deepwater Horizon blowout (DWH). The foregone consumption of Gulf menhaden, after their many predator species were killed by oiling, increased competition among menhaden for food, resulting in poor physiological conditions and low lipid content during 2011 and 2012. Menhaden sampled for length and weight measurements, beginning in 2011, exhibited the poorest condition around Barataria Bay, west of the Mississippi River, where recruitment of the 2010 year class was highest. Trophodynamic comparisons indicate that ~20% of net primary production flowed through Gulf menhaden prior to the DWH, increasing to ~38% in 2011 and ~27% in 2012, confirming the dominant role of Gulf menhaden in their food web. Hyperabundant Gulf menhaden likely suppressed populations of their zooplankton prey, suggesting a trophic cascade triggered by increased menhaden recruitment. Additionally, low-lipid menhaden likely became “junk food” for predators, further propagating adverse effects. We posit that food web analyses based on inappropriate spatial scales for dominant species, or solely on biomass, provide insufficient indication of the ecosystem consequences of oiling injury. Including such cascading and associated indirect effects in damage assessment models will enhance the ability to anticipate and estimate ecosystem damage from, and provide recovery guidance for, major oil spills.


2017 ◽  
Vol 75 (1) ◽  
pp. 30-42 ◽  
Author(s):  
Louis Legendre ◽  
Richard B Rivkin ◽  
Nianzhi Jiao

Abstract This “Food for Thought” article examines the potential uses of several novel scientific and technological developments, which are currently available or being developed, to significantly advance or supplement existing experimental approaches to study water-column biogeochemical processes (WCB-processes). After examining the complementary roles of observation, experiments and numerical models to study WCB-processes, we focus on the main experimental approaches of free-water in situ experiments, and at-sea and on-land meso- and macrocosms. We identify some of the incompletely resolved aspects of marine WCB-processes, and explore advanced experimental approaches that could be used to reduce their uncertainties. We examine three such approaches: free-water experiments of lengthened duration using bioArgo floats and gliders, at-sea mesocosms deployed several 100s m below the sea-surface using new biogeochemical sensors, and 50 m-tall on-land macrocosms. These approaches could lead to significant progress in concepts related to marine WCB-processes.


2016 ◽  
Vol 113 (24) ◽  
pp. E3332-E3340 ◽  
Author(s):  
Beizhan Yan ◽  
Uta Passow ◽  
Jeffrey P. Chanton ◽  
Eva-Maria Nöthig ◽  
Vernon Asper ◽  
...  

The 2010 Deepwater Horizon oil spill resulted in 1.6–2.6 × 1010 grams of petrocarbon accumulation on the seafloor. Data from a deep sediment trap, deployed 7.4 km SW of the well between August 2010 and October 2011, disclose that the sinking of spill-associated substances, mediated by marine particles, especially phytoplankton, continued at least 5 mo following the capping of the well. In August/September 2010, an exceptionally large diatom bloom sedimentation event coincided with elevated sinking rates of oil-derived hydrocarbons, black carbon, and two key components of drilling mud, barium and olefins. Barium remained in the water column for months and even entered pelagic food webs. Both saturated and polycyclic aromatic hydrocarbon source indicators corroborate a predominant contribution of crude oil to the sinking hydrocarbons. Cosedimentation with diatoms accumulated contaminants that were dispersed in the water column and transported them downward, where they were concentrated into the upper centimeters of the seafloor, potentially leading to sustained impact on benthic ecosystems.


Author(s):  
Ferdinando Nunziata ◽  
Andrea Buono ◽  
Maurizio Migliaccio

Oil spills are adverse events that may be very harmful to ecosystems and food chain. In particular, large sea oil spills are very dramatic occurrence often affecting sea and coastal areas. Therefore the sustainability of oil rig infrastructures and oil transportation via oil tankers are linked to law enforcement based on proper monitoring techniques which are also fundamental to mitigate the impact of such pollution. Within this context, in this study a meaningful showcase is analyzed using remotely sensed measurements collected by the Synthetic Aperture Radar (SAR) operated by the COSMO-SkyMed (CSK) constellation. The showcase presented refers to the Deepwater Horizon (DWH) oil incident that occurred in the Gulf of Mexico in 2010. It is one of the world's largest incidental oil pollution event that affected a sea area larger than 10,000 km2. In this study we exploit, for the first time, dual co-polarization SAR data collected by the Italian CSK X-band SAR constellation showing the key benefits of HH-VV SAR measurements in observing such a huge oil pollution event, especially in terms of the very dense revisit time offered by the CSK constellation.


Ocean Science ◽  
2019 ◽  
Vol 15 (4) ◽  
pp. 1055-1069 ◽  
Author(s):  
Pär Jansson ◽  
Jack Triest ◽  
Roberto Grilli ◽  
Bénédicte Ferré ◽  
Anna Silyakova ◽  
...  

Abstract. Methane (CH4) in marine sediments has the potential to contribute to changes in the ocean and climate system. Physical and biochemical processes that are difficult to quantify with current standard methods such as acoustic surveys and discrete sampling govern the distribution of dissolved CH4 in oceans and lakes. Detailed observations of aquatic CH4 concentrations are required for a better understanding of CH4 dynamics in the water column, how it can affect lake and ocean acidification, the chemosynthetic ecosystem, and mixing ratios of atmospheric climate gases. Here we present pioneering high-resolution in situ measurements of dissolved CH4 throughout the water column over a 400 m deep CH4 seepage area at the continental slope west of Svalbard. A new fast-response underwater membrane-inlet laser spectrometer sensor demonstrates technological advances and breakthroughs for ocean measurements. We reveal decametre-scale variations in dissolved CH4 concentrations over the CH4 seepage zone. Previous studies could not resolve such heterogeneity in the area, assumed a smoother distribution, and therefore lacked both details on and insights into ongoing processes. We show good repeatability of the instrument measurements, which are also in agreement with discrete sampling. New numerical models, based on acoustically evidenced free gas emissions from the seafloor, support the observed heterogeneity and CH4 inventory. We identified sources of CH4, undetectable with echo sounder, and rapid diffusion of dissolved CH4 away from the sources. Results from the continuous ocean laser-spectrometer measurements, supported by modelling, improve our understanding of CH4 fluxes and related physical processes over Arctic CH4 degassing regions.


2016 ◽  
Vol 13 (20) ◽  
pp. 5719-5738 ◽  
Author(s):  
Lisa Warden ◽  
Jung-Hyun Kim ◽  
Claudia Zell ◽  
Geert-Jan Vis ◽  
Henko de Stigter ◽  
...  

Abstract. The distributions of branched glycerol dialkyl glycerol tetraethers (brGDGTs), which are transported from the soils where they are predominantly produced to marine sediments via rivers, have been applied in reconstructing mean annual air temperature (MAT) and pH of soils. However, paleoclimate reconstructions using sedimentary brGDGTs have proven difficult in arid regions, including the Iberian Peninsula. Recently, six novel 6-methyl brGDGTs have been described using new analytical methods (in addition to the nine 5-methyl brGDGTs previously used for climate reconstructions), and so new pH and MAT calibrations have been developed that were shown to improve the accuracy of reconstructions in a set of global soil samples, especially in arid regions. Because of this we decided to apply the new method to separate the 5- and 6-methyl isomers along with the novel calibrations to a sample set from the Iberian Peninsula to determine whether it improves paleoclimate reconstructions in this area. This set includes samples that run in a transect from source to sink along the Tagus River and out to the deep ocean off the Portuguese margin spanning the last 6000 years. We found that although pH reconstructions in the soils were improved using the new calibration, MAT reconstructions were not much better even with the separation of the 5- and 6-methyl brGDGTs. This confirmed the conclusion of previous studies that the amount of aquatically produced brGDGTs is overwhelming the soil-derived ones in marine sediments and complicating MAT reconstructions in the region. Additionally, the new separation revealed a strong and until now unseen relationship between the new degree of cyclization (DC') of the brGDGTs and MAT that could be making temperature reconstructions in this and other arid regions difficult.


Sign in / Sign up

Export Citation Format

Share Document