Optimal Design of the Shell Structure of a Disk-Shaped Water-Spraying Robot

2021 ◽  
Vol 55 (2) ◽  
pp. 127-136
Author(s):  
Gang Chen ◽  
Zhenyu Wang ◽  
Sheng Yang ◽  
Lixin Pan ◽  
Zhiyang Wu ◽  
...  

Abstract Underwater exploration tasks in a narrow environment have stringent requirements related to the dynamic mode and shell design of underwater submersibles. Specifically, these submersibles should have horizontal maneuverability to move in a narrow environment. A certain degree of stability in the vertical direction should also be maintained to realize the stability of these submersibles at a certain depth for observation. A disk-shaped shell has the mobility of a spherical shell in the horizontal direction and the stability of a pancake-shaped shell in the vertical direction. Therefore, a design scheme for a disk-shaped shell of a water-spraying underwater robot was formulated through a comparative analysis of various shell shapes. To achieve movement in different directions, the Fluent fluid simulation software was used to continuously simulate and optimize these shell shapes. Relevant parameters, such as total pressure and force, that were obtained from the simulation were analyzed through horizontal and vertical comparisons. The maneuverability of the disk-shaped shell on the horizontal plane and its stability on the vertical plane were subsequently verified. Based on the measured maneuverability, the system of the disk-shaped water-spraying robot was designed, and a movement experiment was conducted to examine the straight and rotational motions of this robot. This study provides new ideas and theoretical support for designing the shape of submersibles in narrow underwater environments and promotes the development of underwater exploration technologies for narrow spaces.

Author(s):  
ZH Yuan ◽  
SY Guo ◽  
SN Zhang ◽  
JQ Zhao ◽  
WJ Lu ◽  
...  

Based on the suspension of a missile using folding rotary wings and airbags, in order to improve the basic parameters and motion characteristics of the rotor during the unfolding process and analyze the aerodynamic characteristics of the entire device in the suspension state, after proposing a scheme of double-spin mechanism, the main folding and unfolding mechanism, initial driving device, rotating driving device, and locking mechanism were designed, and the simulation research is studied by the Automatic Dynamic Analysis of Mechanical System and Ansys Fluent Fluid Simulation software, respectively. The results show that the rotation rate was controlled at 41.8 mm/s, the various motion parameters are reasonable, and the operation process is relatively smooth, with high reliability. The speed and pressure value at the tip of the rotor are higher and the aerodynamic disturbance is obvious, which has a great influence on the aerodynamic performance. The speed and pressure distribution of the surrounding flow field is stable, the lift provided is 46 N, and the lift coefficient is 0.55, which can ensure the long-time suspension state of the missile. This paper puts forward a valuable design idea and has practical reference value for the research of the suspended missile.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2301
Author(s):  
Man Zhang ◽  
Bin Liang ◽  
Hongjun He ◽  
Changjian Ji ◽  
Tingting Cui ◽  
...  

Appropriate pretreatment of proteins and addition of xanthan gum (XG) has the potential to improve the stability of oil-in-water (O/W) emulsions. However, the factors that regulate the enhancement and the mechanism are still not clear, which restricts the realization of improving the emulsion stability by directional design of its structure. Therefore, the effects of whey protein micro-gel particles (WPMPs) and WPMPs-XG complexes on the stability of O/W emulsion were investigated in this article to provide theoretical support. WPMPs with different structures were prepared by pretreatment (controlled high-speed shear treatment of heat-set WPC gels) at pH 3.5–8.5. The impact of initial WPC structure and XG addition on Turbiscan Indexes, mean droplet size and the peroxide values of O/W emulsions was investigated. The results indicate that WPMPs and XG can respectively inhibit droplet coalescence and gravitational separation to improve the physical stability of WPC-stabilized O/W emulsions. The pretreatment significantly enhanced the oxidative stability of WPC-stabilized O/W emulsions. The addition of XG did not necessarily enhance the oxidative stability of O/W emulsions. Whether the oxidative stability of the O/W emulsion with XG is increased or decreased depends on the interface structure of the protein-XG complex. This study has significant implications for the development of novel structures containing lipid phases that are susceptible to oxidation.


2021 ◽  
pp. 1-12
Author(s):  
Tomotaka Saruya ◽  
Shuji Fujita ◽  
Ryo Inoue

Abstract Polycrystalline ice is known to exhibit macroscopic anisotropy in relative permittivity (ɛ) depending on the crystal orientation fabric (COF). Using a new system designed to measure the tensorial components of ɛ, we investigated the dielectric anisotropy (Δɛ) of a deep ice core sample obtained from Dome Fuji, East Antarctica. This technique permits the continuous nondestructive assessment of the COF in thick ice sections. Measurements of vertical prism sections along the core showed that the Δɛ values in the vertical direction increased with increasing depth, supporting previous findings of c-axis clustering around the vertical direction. Analyses of horizontal disk sections demonstrated that the magnitude of Δɛ in the horizontal plane was 10–15% of that in the vertical plane. In addition, the directions of the principal axes of tensorial ɛ in the horizontal plane corresponded to the long or short axis of the elliptically elongated single-pole maximum COF. The data confirmed that Δɛ in the vertical and horizontal planes adequately indicated the preferred orientations of the c-axes, and that Δɛ can be considered to represent a direct substitute for the normalized COF eigenvalues. This new method could be extremely useful as a means of investigating continuous and depth-dependent variations in COF.


2019 ◽  
Vol 136 ◽  
pp. 04023
Author(s):  
Ming Zhao ◽  
Ke Li ◽  
Hong Yan Guo ◽  
KaiCheng Hua

Based on the special geological conditions of a tunnel in Qingyuan section of Huizhou-Zhanzhou Expressway, FLAC3d numerical simulation software is used to simulate the rheological properties and instability of surrounding rock in large-section fully weathered sandstone section, and the stability and loss of surrounding rock are analyzed. The deformation of the dome and the face at steady state is analyzed. It is found that: 1) when the surrounding rock is in a stable state, the deformation curve of the dome is smooth. When the surrounding rock of the face is unstable, the front of the face appears ahead. Deformation should be first strengthened on the surrounding rock in front of the face. 2) The arched foot is an important part of the instability of the surrounding rock. In order to prevent the expansion of the collapsed part, the arched part should be reinforced. 3) In order to obtain the limit state of surrounding rock stability, the strength of surrounding rock is reduced, and the strength reduction coefficient corresponding to the displacement sudden point is taken as the safety factor of rock stability around the hole, and the stability safety coefficients of surrounding rock of each construction step are greater than 1.2. 4) The dynamic standard values of deformation control in the whole construction stage are obtained by analyzing the deformation curves of each data monitoring point with time in the corresponding time period of each construction step.


2014 ◽  
Vol 755 ◽  
pp. 705-731 ◽  
Author(s):  
Sasan Sarmast ◽  
Reza Dadfar ◽  
Robert F. Mikkelsen ◽  
Philipp Schlatter ◽  
Stefan Ivanell ◽  
...  

AbstractTwo modal decomposition techniques are employed to analyse the stability of wind turbine wakes. A numerical study on a single wind turbine wake is carried out focusing on the instability onset of the trailing tip vortices shed from the turbine blades. The numerical model is based on large-eddy simulations (LES) of the Navier–Stokes equations using the actuator line (ACL) method to simulate the wake behind the Tjæreborg wind turbine. The wake is perturbed by low-amplitude excitation sources located in the neighbourhood of the tip spirals. The amplification of the waves travelling along the spiral triggers instabilities, leading to breakdown of the wake. Based on the grid configurations and the type of excitations, two basic flow cases, symmetric and asymmetric, are identified. In the symmetric setup, we impose a 120° symmetry condition in the dynamics of the flow and in the asymmetric setup we calculate the full 360° wake. Different cases are subsequently analysed using dynamic mode decomposition (DMD) and proper orthogonal decomposition (POD). The results reveal that the main instability mechanism is dispersive and that the modal growth in the symmetric setup arises only for some specific frequencies and spatial structures, e.g. two dominant groups of modes with positive growth (spatial structures) are identified, while breaking the symmetry reveals that almost all the modes have positive growth rate. In both setups, the most unstable modes have a non-dimensional spatial growth rate close to $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\pi /2$ and they are characterized by an out-of-phase displacement of successive helix turns leading to local vortex pairing. The present results indicate that the asymmetric case is crucial to study, as the stability characteristics of the flow change significantly compared to the symmetric configurations. Based on the constant non-dimensional growth rate of disturbances, we derive a new analytical relationship between the length of the wake up to the turbulent breakdown and the operating conditions of a wind turbine.


Author(s):  
Anurag Chapagain

Abstract: It is a well-known fact in physics that classical mechanics describes the macro-world, and quantum mechanics describes the atomic and sub-atomic world. However, principles of quantum mechanics, such as Heisenberg’s Uncertainty Principle, can create visible real-life effects. One of the most commonly known of those effects is the stability problem, whereby a one-dimensional point base object in a gravity environment cannot remain stable beyond a time frame. This paper expands the stability question from 1- dimensional rod to 2-dimensional highly symmetrical structures, such as an even-sided polygon. Using principles of classical mechanics, and Heisenberg’s uncertainty principle, a stability equation is derived. The stability problem is discussed both quantitatively as well as qualitatively. Using the graphical analysis of the result, the relation between stability time and the number of sides of polygon is determined. In an environment with gravity forces only existing, it is determined that stability increases with the number of sides of a polygon. Using the equation to find results for circles, it was found that a circle has the highest degree of stability. These results and the numerical calculation can be utilized for architectural purposes and high-precision experiments. The result is also helpful for minimizing the perception that quantum mechanical effects have no visible effects other than in the atomic, and subatomic world. Keywords: Quantum mechanics, Heisenberg Uncertainty principle, degree of stability, polygon, the highest degree of stability


2021 ◽  
Vol 308 ◽  
pp. 02010
Author(s):  
Yang Huimin ◽  
Zhao Shuwen ◽  
Kim Chulsoo

With the development of urbanization, the heat island phenomenon has led to further deterioration of the urban thermal environment, resulting in wind environment differences. To study the thermal environment of the city, this paper takes the Busan area in South Korea as the research object and analyzes the connection between the layout of buildings and the wind environment based on the microscopic wind environment characteristics of the coastal area using CFD air-fluid simulation software and suggests that the monsoon influence brought by the coastal currents should be paid attention to, the layout of wind-oriented building groups should be improved, urban air ducts should be established to enhance the ventilation efficiency, and the wind environment of the urban public environment and buildings should be guaranteed. The wind environment quality of urban public environment and indoor environment should be ensured.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Binbin Pei ◽  
Haojun Xu ◽  
Yuan Xue

Current fight boundary of the envelope protection in icing conditions is usually defined by the critical values of state parameters; however, such method does not take the interrelationship of each parameter and the effect of the external disturbance into consideration. This paper proposes constructing the stability boundary of the aircraft in icing conditions through analyzing the region of attraction (ROA) around the equilibrium point. Nonlinear icing effect model is proposed according to existing wind tunnel test results. On this basis, the iced polynomial short period model can be deduced further to obtain the stability boundary under icing conditions using ROA analysis. Simulation results for a series of icing severity demonstrate that, regardless of the icing severity, the boundary of the calculated ROA can be treated as an estimation of the stability boundary around an equilibrium point. The proposed methodology is believed to be a promising way for ROA analysis and stability boundary construction of the aircraft in icing conditions, and it will provide theoretical support for multiple boundary protection of icing tolerant flight.


2018 ◽  
Vol 853 ◽  
pp. 205-234 ◽  
Author(s):  
Giulio Facchini ◽  
Benjamin Favier ◽  
Patrice Le Gal ◽  
Meng Wang ◽  
Michael Le Bars

We present the stability analysis of a plane Couette flow which is stably stratified in the vertical direction orthogonal to the horizontal shear. Interest in such a flow comes from geophysical and astrophysical applications where background shear and vertical stable stratification commonly coexist. We perform the linear stability analysis of the flow in a domain which is periodic in the streamwise and vertical directions and confined in the cross-stream direction. The stability diagram is constructed as a function of the Reynolds number $Re$ and the Froude number $Fr$, which compares the importance of shear and stratification. We find that the flow becomes unstable when shear and stratification are of the same order (i.e. $Fr\sim 1$) and above a moderate value of the Reynolds number $Re\gtrsim 700$. The instability results from a wave resonance mechanism already known in the context of channel flows – for instance, unstratified plane Couette flow in the shallow-water approximation. The result is confirmed by fully nonlinear direct numerical simulations and, to the best of our knowledge, constitutes the first evidence of linear instability in a vertically stratified plane Couette flow. We also report the study of a laboratory flow generated by a transparent belt entrained by two vertical cylinders and immersed in a tank filled with salty water, linearly stratified in density. We observe the emergence of a robust spatio-temporal pattern close to the threshold values of $Fr$ and $Re$ indicated by linear analysis, and explore the accessible part of the stability diagram. With the support of numerical simulations we conclude that the observed pattern is a signature of the same instability predicted by the linear theory, although slightly modified due to streamwise confinement.


Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5632
Author(s):  
Weixuan Sun ◽  
Wenhan Yang ◽  
Yuxue Zheng ◽  
Huiling Zhang ◽  
Haitian Fang ◽  
...  

In order to broaden the application of potato pulp pectic polysaccharide (PPP) in stabilizing acidified milk drinks (AMDs) and investigate the stabilizing effect and physical properties of AMDs prepared with PPP, a comparative study was made among PPP, commercial high methoxyl pectin (HMP) and low methoxyl pectin (LMP). The zeta potential, rheology, particle size and serum separation of AMDs were evaluated after preparing with PPP, HMP and LMP, respectively. Results indicated that PPP led to lower serum separation than LMP (14.65% for AMDs prepared with 0.5% PPP compared to 25.05% for AMDs prepared with 0.5% LMP), but still higher than HMP (9.09% for AMDs prepared with 0.5% HMP). However, narrower particle size distribution and lower viscosity of AMDs was achieved by PPP than by LMP and HMP. PPP can electrostatically adsorb on the surface of casein and its abundant neutral sugar side chains would provide steric hindrance to prevent casein flocculation in AMDs. Our results might provide some new ideas for the application of PPP in improving the stability of AMDs.


Sign in / Sign up

Export Citation Format

Share Document