scholarly journals Biosynthesis of Silver Nanoparticles from Desmodium triflorum: A Novel Approach Towards Weed Utilization

2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Naheed Ahmad ◽  
Seema Sharma ◽  
V. N. Singh ◽  
S. F. Shamsi ◽  
Anjum Fatma ◽  
...  

A single-step environmental friendly approach is employed to synthesize silver nanoparticles. The biomolecules found in plants induce the reduction of Ag+ ions from silver nitrate to silver nanoparticles (AgNPs). UV-visible spectrum of the aqueous medium containing silver ions demonstrated a peak at 425 nm corresponding to the plasmon absorbance of silver nanoparticles. Transmission electron microscopy (TEM) showed the formation of well-dispersed silver nanoparticles in the range of 5–20 nm. X-ray diffraction (XRD) spectrum of the AgNPs exhibited 2θ values corresponding to the silver nanocrystal. The process of reduction is extracellular and fast which may lead to the development of easy biosynthesis of silver nanoparticles. Plants during glycolysis produce a large amount of H+ ions along with NAD which acts as a strong redoxing agent; this seems to be responsible for the formation of AgNPs. Water-soluble antioxidative agents like ascorbic acids further seem to be responsible for the reduction of AgNPs. These AgNPs produced show good antimicrobial activity against common pathogens.

NANO ◽  
2011 ◽  
Vol 06 (03) ◽  
pp. 279-286 ◽  
Author(s):  
V. RATHEESH KUMAR ◽  
V. S. PRASAD ◽  
P. R. S. WARIAR ◽  
J. KOSHY

The complex perovskite Ba2YbZrO5.5 has been successfully synthesized as nanoparticles through a single step combustion process for the first time. The X-ray diffraction analysis revealed that the combustion product is phase-pure and has an ordered cubic perovskite structure. Transmission electron microscopy results indicated that the particle sizes are 10–20 nm. The selected area electron diffraction pattern has shown that as-prepared powder is polycrystalline in nature. The UV–visible spectrum analysis confirmed that the optical absorption edge of Ba2YbZrO5.5 is around 340 nm, corresponding to a band gap of ~ 3.65 eV. Photocatalytic activity of Ba2YbZrO5.5 nanoparticles is investigated for the degradation of methyl orange under solar irradiation.


2012 ◽  
Vol 488-489 ◽  
pp. 1409-1413
Author(s):  
Adeleh Granmayeh Rad ◽  
Hamed Abbasi

In this work we report the preparation of colloidal silver nanoparticles. In order to prepare the silver nanoparticles laser ablation method has been used.A silver coin as a target (purity 99.9 %) was ablated by a Q-Switched Nd:YAG laser with a fluence of about 91 mJ/cm2 at a repetition rate of 10 Hz at room temperature. In order to evaluate these particles transmission electron microscopy (TEM) and spectrophotometry (from UV to NIR) have been used. The average size of prepared nanoparticles is ~ 20 nm. The importance of morphology of nanoparticles has been investigated. Developed applications of silver nanoparticles have been studied,silver nanoparticles are considered as biocompatible and low in toxicity and have good potential for biological applications. Lately silver nanoparticles have found a novel approach in different fields of medicine, biology and industry.


2019 ◽  
Vol 25 ◽  
pp. 32-45 ◽  
Author(s):  
Munyao Joshua Sila ◽  
Michira Immaculate Nyambura ◽  
Deborah Atieno Abong’o ◽  
Francis B. Mwaura ◽  
Emmanuel Iwuoha

This study reports the biosynthesis of narrow range diameter silver nanoparticles at optimum conditions usingEucalyptus corymbiaas a reducing and stabilizing agent. Optimal conditions for biosynthesis of silver nanoparticles (AgNPs) were found to be; an extraction temperature of 90°C, pH of 5.7 a Silver Nitrate concentration of 1mM and AgNO3to plant extract ratio of 4:1. UV-Visible spectroscopy monitored the formation of colloidal AgNPs. The UV-Visible spectrum showed a peak around 425 nm corresponding to the Plasmon absorbance of the AgNPs. The size and shape characterization of the AgNPs was done using Transmission Electron Microscopy (TEM) techniques which revealed narrow range diameter (18-20 nm), almost monodispersed AgNPs, spherical in nature and with minimal agglomeration. Energy Dispersive X-ray (EDX) results showed the presence of two peaks at 3.0 and 3.15 keV in the silver region. The Fourier Transform Infrared-Spectra (FTIR) of the plant extract and the AgNPs gave rise to vibrational peaks at 3260 and 1634 wavenumbers which are due to the presence of OH and –C=C-functional groups respectively.


2015 ◽  
Vol 660 ◽  
pp. 155-160
Author(s):  
Norsuria Mahmed ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Andrei Victor Sandu ◽  
Petrică Vizureanu ◽  
Simo Pekka Hannula

The nanosized silica (SiO2) with the size less than 100 nm have successfully been prepared by hydrolysis and condensation of tetraethyl orthosilicate (TEOS) via a modified Stöber method at room temperature. The experiment was conducted by controlling the amount of the catalyst used, i.e., ammonium hydroxide (NH4OH). The morphology observation of the synthesized silica nanoparticles was conducted by using a transmission electron microscope (TEM). It was found that the size of the silica depending on the amount of the catalyst used, with homogenous size ranging from 10 to 360 nm. The doping of silver nanoparticles was done by mixing the synthesized silica with the silver ions (Ag+) solutions. Then the sample was annealed for 75 min which results in the nucleation of the silver nanoparticles less than 20 nm onto the silica surfaces, depending on the temperature used.


2009 ◽  
Vol 1217 ◽  
Author(s):  
Vinodkumar Etacheri ◽  
Reenamole Georgekutty ◽  
Michael K Seery ◽  
Suresh C Pillai

AbstractSilver nanoparticles having different size and plasmon resonances were synthesized through a single step aqueous based method. The current procedure was based on the reduction of silver ions by ascorbic acid in the presence of sodiumborohydride and trisodium citrate. Triangular colloidal nanoparticles having different plasmon resonances (and hence different size and colours) were synthesized by varying only the concentration of ascorbic acid. These nanoparticles were found to be stable without using any surfactants or polymers. This study revealed a strong correlation between particle growth and concentration of constituent chemicals. Crystallinity and phase purity of the silver samples were investigated through powder X-ray diffraction studies (XRD). Absorption spectra of various silver particles were recorded using UV/Vis/NIR spectrometer. Morphological analysis was performed using transmission electron microscopy (TEM) and average edge lengths of nanoparticles were also calculated.


Antibiotics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 678
Author(s):  
Abdallah S. Abdelsattar ◽  
Rana Nofal ◽  
Salsabil Makky ◽  
Anan Safwat ◽  
Amera Taha ◽  
...  

The emergence and evolution of antibiotic-resistant bacteria is considered a public health concern. Salmonella is one of the most common pathogens that cause high mortality and morbidity rates in humans, animals, and poultry annually. In this work, we developed a combination of silver nanoparticles (AgNPs) with bacteriophage (phage) as an antimicrobial agent to control microbial growth. The synthesized AgNPs with propolis were characterized by testing their color change from transparent to deep brown by transmission electron microscopy (TEM) and Fourier-Transform Infrared Spectroscopy (FTIR). The phage ZCSE2 was found to be stable when combined with AgNPs. Both minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were evaluated for AgNPs, phage, and their combination. The results indicated that MIC and MBC values were equal to 23 µg/mL against Salmonella bacteria at a concentration of 107 CFU/mL. The combination of 0.4× MIC from AgNPs and phage with Multiplicity of Infection (MOI) 0.1 showed an inhibitory effect. This combination of AgNPs and phage offers a prospect of nanoparticles with significantly enhanced antibacterial properties and therapeutic performance.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
M. A. El-Sheikh

The water soluble photoinitiator (PI) 4-(trimethyl ammonium methyl) benzophenone chloride is used for the first time in the synthesis of silver nanoparticles (AgNPs). A new green synthesis method involves using PI/UV system, carboxymethyl starch (CMS), silver nitrate, and water. A mechanism of the reduction of silver ions to AgNPs by PI/UV system as well as by the newly born aldehydic groups was proposed. The synthesis process was assessed by UV-vis spectra and TEM of AgNPs colloidal solution. The highest absorbance was obtained using CMS, PI and AgNO3concentrations of 10 g/L, 1 g/L, and 1 g/L, respectively; 40°C; 60 min; pH 7; and a material : liquor ratio 1 : 20. AgNPs so-obtained were stable in aqueous solution over a period of three weeks at room temperature (~25°C) and have round shape morphology. The sizes of synthesized AgNPs were in the range of 1–21 nm and the highest counts % of these particles were for particles of 6–10 and 1–3 nm, respectively.


Author(s):  
Shyla Marjorie Haqq ◽  
Amit Chattree

  This review is based on the synthesis of silver nanoparticles (AgNPs) using a green approach which is biofabricated from various medicinal plants. AgNPs were prepared from the various parts of the plants such as the flowers, stems, leaves, and fruits. Various physiochemical characterizations were performed using the ultraviolet (UV)-visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction spectroscopy, transmission electron microscopy, and energy dispersive spectroscopy. AgNPs were also used to inhibit the growth of bacterial pathogens and were found to be effective against both the Gram-positive and Gram-negative bacteria. For the silver to have antimicrobial properties, it must be present in the ionized form. All the forms of silver-containing compounds with the observed antimicrobial properties are in one way or another source of silver ions. Although the antimicrobial properties of silver have been known, it is thought that the silver atoms bind to the thiol groups in enzymes and subsequently leads to the deactivation of enzymes. For the silver to have antimicrobial properties, it must be present in the ionized form. The study suggested that the action of the AgNPs on the microbial cells resulted into cell lysis and DNA damage. AgNPs have proved their candidature as a potential antibacterial against the multidrug-resistant microbes. The biological agents for synthesizing AgNPs cover compounds produced naturally in microbes and plants. Reaction parameters under which the AgNPs were being synthesized hold prominent impact on their size, shape, and application. Silver nanoparticle synthesis and their application are summarized and critically discussed in this review.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Edwina Olohirere Uzunuigbe ◽  
Abidemi Paul Kappo ◽  
Sixberth Mlowe ◽  
Neerish Revaprasadu

Synthesizing nanoparticles with the less environmentally malignant approach using plant extract is of great interest; this is because most of the chemical approaches can be very costly, toxic, and time-consuming. Herein, we report the use of Acacia senegal leaf extracts to synthesize silver nanoparticles (AgNPs) using an environmentally greener approach. Silver ions were reduced using the bioactive components of the plant extracts with observable colour change from faint colourless to a brownish solution as indication of AgNP formation. The structural properties of the as-synthesized AgNPs were characterized using powder X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and UV-Vis absorption spectrum. Antimicrobial assessment of the as-synthesized AgNPs was explored on some strains of gram-positive and gram-negative bacteria. The obtained results indicate that the as-synthesized AgNPs are pure crystallite of cubic phase of AgNPs, fairly dispersed with a size range of 10–19 nm. The AgNPs were found to be small in size and exhibit significant antibacterial activities, suggesting that the as-synthesized AgNPs could be used in the pharmaceutical and food industries as bactericidal agents.


2019 ◽  
Vol 31 (12) ◽  
pp. 2804-2810
Author(s):  
Anti Kolonial Prodjosantoso ◽  
Oktanio Sigit Prawoko ◽  
Maximus Pranjoto Utomo ◽  
Lis Permana Sari

In this article, the synthesis of silver nanoparticles through a reduction reaction process using Salacca zalacca extract is reported. The AgNPs were characterized using X-ray diffraction, transmission electron microscopy, Fourier transform infrared and UV-visible spectrophotometry methods. The AgNPs antibacterial activity was determined against of Gram-positive bacteria (Staphylococcus epidermidis) and Gram-negative bacteria (Escherichia coli). The main functional groups contained in Salacca zalacca extract are carbonyl, hydroxyl and nitrile groups, which are believed to reduce the silver ions to metal. The surface plasmon resonance values of brownish red AgNPs are in the range of 410 nm to 460 nm. The structure of AgNPs is face centered cubic (FCC). The diameter of silver nanoparticles crystallite is 14.2 ± 2.6 nm. The AgNPs growth inhibition zones of Escherichia coli and Staphylococcus epidermidis are 9.6 mm and 9.2 mm, respectively.


Sign in / Sign up

Export Citation Format

Share Document