scholarly journals May “Mitochondrial Eve” and Mitochondrial Haplogroups Play a Role in Neurodegeneration and Alzheimer's Disease?

2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Elena Caldarazzo Ienco ◽  
Costanza Simoncini ◽  
Daniele Orsucci ◽  
Loredana Petrucci ◽  
Massimiliano Filosto ◽  
...  

Mitochondria, the powerhouse of the cell, play a critical role in several metabolic processes and apoptotic pathways. Multiple evidences suggest that mitochondria may be crucial in ageing-related neurodegenerative diseases. Moreover, mitochondrial haplogroups have been linked to multiple area of medicine, from normal ageing to diseases, including neurodegeneration. Polymorphisms within the mitochondrial genome might lead to impaired energy generation and to increased amount of reactive oxygen species, having either susceptibility or protective role in several diseases. Here, we highlight the role of the mitochondrial haplogroups in the pathogenetic cascade leading to diseases, with special attention to Alzheimer's disease.

2021 ◽  
Vol 10 (19) ◽  
pp. 4360
Author(s):  
Iska Avitan ◽  
Yudit Halperin ◽  
Trishna Saha ◽  
Naamah Bloch ◽  
Dana Atrahimovich ◽  
...  

Alzheimer’s disease (AD) is often comorbid with other pathologies. First, we review shortly the diseases most associated with AD in the clinic. Then we query PubMed citations for the co-occurrence of AD with other diseases, using a list of 400 common pathologies. Significantly, AD is found to be associated with schizophrenia and psychosis, sleep insomnia and apnea, type 2 diabetes, atherosclerosis, hypertension, cardiovascular diseases, obesity, fibrillation, osteoporosis, arthritis, glaucoma, metabolic syndrome, pain, herpes, HIV, alcoholism, heart failure, migraine, pneumonia, dyslipidemia, COPD and asthma, hearing loss, and tobacco smoking. Trivially, AD is also found to be associated with several neurodegenerative diseases, which are disregarded. Notably, our predicted results are consistent with the previously published clinical data and correlate nicely with individual publications. Our results emphasize risk factors and promulgate diseases often associated with AD. Interestingly, the comorbid diseases are often degenerative diseases exacerbated by reactive oxygen species, thus underlining the potential role of antioxidants in the treatment of AD and comorbid diseases.


2020 ◽  
Vol 21 (21) ◽  
pp. 8338
Author(s):  
Kimberley D. Bruce ◽  
Maoping Tang ◽  
Philip Reigan ◽  
Robert H. Eckel

Lipoprotein lipase (LPL) is a key enzyme in lipid and lipoprotein metabolism. The canonical role of LPL involves the hydrolysis of triglyceride-rich lipoproteins for the provision of FFAs to metabolic tissues. However, LPL may also contribute to lipoprotein uptake by acting as a molecular bridge between lipoproteins and cell surface receptors. Recent studies have shown that LPL is abundantly expressed in the brain and predominantly expressed in the macrophages and microglia of the human and murine brain. Moreover, recent findings suggest that LPL plays a direct role in microglial function, metabolism, and phagocytosis of extracellular factors such as amyloid- beta (Aβ). Although the precise function of LPL in the brain remains to be determined, several studies have implicated LPL variants in Alzheimer’s disease (AD) risk. For example, while mutations shown to have a deleterious effect on LPL function and expression (e.g., N291S, HindIII, and PvuII) have been associated with increased AD risk, a mutation associated with increased bridging function (S447X) may be protective against AD. Recent studies have also shown that genetic variants in endogenous LPL activators (ApoC-II) and inhibitors (ApoC-III) can increase and decrease AD risk, respectively, consistent with the notion that LPL may play a protective role in AD pathogenesis. Here, we review recent advances in our understanding of LPL structure and function, which largely point to a protective role of functional LPL in AD neuropathogenesis.


2019 ◽  
Vol 25 (40) ◽  
pp. 5578-5587 ◽  
Author(s):  
Claus Desler ◽  
Meryl S. Lillenes ◽  
Tone Tønjum ◽  
Lene Juel Rasmussen

The current molecular understanding of Alzheimer’s disease (AD) has still not resulted in successful interventions. Mitochondrial dysfunction of the AD brain is currently emerging as a hallmark of this disease. One mitochondrial function often affected in AD is oxidative phosphorylation responsible for ATP production, but also for production of reactive oxygen species (ROS) and for the de novo synthesis of pyrimidines. This paper reviews the role of mitochondrial produced ROS and pyrimidines in the aetiology of AD and their proposed role in oxidative degeneration of macromolecules, synthesis of essential phospholipids and maintenance of mitochondrial viability in the AD brain.


2014 ◽  
Vol 60 (2) ◽  
pp. 173-180 ◽  
Author(s):  
Abhijit N. Gurav

Alzheimer's disease is the preeminent cause and commonest form of dementia. It is clinically characterized by a progressive descent in the cognitive function, which commences with deterioration in memory. The exact etiology and pathophysiologic mechanism of Alzheimer's disease is still not fully understood. However it is hypothesized that, neuroinflammation plays a critical role in the pathogenesis of Alzheimer's disease. Alzheimer's disease is marked by salient inflammatory features, characterized by microglial activation and escalation in the levels of pro-inflammatory cytokines in the affected regions. Studies have suggested a probable role of systemic infection conducing to inflammatory status of the central nervous system. Periodontitis is common oral infection affiliated with gram negative, anaerobic bacteria, capable of orchestrating localized and systemic infections in the subject. Periodontitis is known to elicit a "low grade systemic inflammation" by release of pro-inflammatory cytokines into systemic circulation. This review elucidates the possible role of periodontitis in exacerbating Alzheimer's disease. Periodontitis may bear the potential to affect the onset and progression of Alzheimer's disease. Periodontitis shares the two important features of Alzheimer's disease namely oxidative damage and inflammation, which are exhibited in the brain pathology of Alzheimer's disease. Periodontitis can be treated and hence it is a modifiable risk factor for Alzheimer's disease.


2005 ◽  
Vol 15 ◽  
pp. S217
Author(s):  
T.V. Davidova ◽  
V.G. Fomina ◽  
N.I. Voskresenskaya ◽  
L.A. Vetrile ◽  
N.A. Trekova ◽  
...  

2021 ◽  
Author(s):  
Yaliang Yu ◽  
Jianzhou Lv ◽  
Dan Ma ◽  
Ya Han ◽  
Yaheng Zhang ◽  
...  

Abstract Alzheimer’s disease (AD) is a progressive neurodegenerative disease with no effective therapies. It’s well-known that chronic neuroinflammation plays a critical role in the onset and progression of AD. Proper neuronal-microglial interactions are essential for brain functions. However, as the main existence of immune cells, determining the role of microglia in Alzheimer’s neuroinflammation and the associated molecular basis has been challenging. Herein, the inflammatory factors in the sera of AD patients were detected and the association with microglia activation was analyzed. The mechanism regarding the microglial inflammation was investigated. The IL6 and TNF-α were found to be significantly increased in the AD stage. Further analysis revealed microglia were extensively activated in AD cerebra releasing mounts of cytokines to impair the neural stem cells (NSCs) function. Moreover, ApoD induced NLRC4 inflammasome was activated in microglia, which gave rise to the proinflammatory phenotype. Targeting the microglial ApoD promoted NSCs self-renewal and inhibited neuron apoptosis. These findings demonstrate the critical role of ApoD in microglial inflammasome activation, and for the first time reveal that microglia-induced inflammation suppresses neuronal proliferation. Our studies establish the cellular basis for microglia activation in AD progression, and shed lights on cellular interactions important for AD treatment.


2018 ◽  
Vol 129 (4) ◽  
pp. 325-336 ◽  
Author(s):  
Guang Fang ◽  
Baoyan Shi ◽  
Kefeng Wu ◽  
Siyu Chen ◽  
Xiang Gao ◽  
...  

Author(s):  
Airton Cunha Martins ◽  
Patricia Morcillo ◽  
Omamuyovwi Meashack Ijomone ◽  
Vivek Venkataramani ◽  
Fiona Edith Harrison ◽  
...  

Manganese (Mn) is an essential trace element that is naturally found in the environment and is necessary as a cofactor for many enzymes and is important in several physiological processes that support development, growth, and neuronal function. However, overexposure to Mn may induce neurotoxicity and may contribute to the development of Alzheimer’s disease (AD) and Parkinson’s disease (PD). The present review aims to provide new insights into the involvement of Mn in the etiology of AD and PD. Here, we discuss the critical role of Mn in the etiology of these disorders and provide a summary of the proposed mechanisms underlying Mn-induced neurodegeneration. In addition, we review some new therapy options for AD and PD related to Mn overload.


Sign in / Sign up

Export Citation Format

Share Document