Environmentally Hardening IC Die Previously Assembled in Plastic Packages through Die Removal, Bond Pad Replating and Reassembly into Hermetic Packages

2018 ◽  
Vol 2018 (HiTEC) ◽  
pp. 000039-000044
Author(s):  
Charlie Beebout ◽  
Erick M. Spory

ABSTRACT Many integrated circuits (ICs) will operate well above their maximum rated temperature of +70°C or +125°C, but are often not packaged appropriately to reliably endure temperatures above +150C. Specifically, the original gold or copper bonds on the aluminum die bond pads are prone to Kirkendall or Horsting voiding, particularly at temperatures greater than +150°C. Also the mold compounds used in plastic packaging for IC assembly can degrade at these elevated temperatures. In some cases, commercial demand for higher temperature reliability can justify a separate offering of ICs assembled in hermetic, ceramic packages from the original component manufacturer (OCM). However, in most cases, the market demand is deemed insufficient. Global Circuit Innovations (GCI) has developed a high-yielding process, which can remove a semiconductor die (i.e., computer chip) from a plastic package, remove the original bond wires and/or ball bonds, plate the aluminum die bond pads with Electroless Nickel, Electroless Palladium, and Immersion Gold (ENEPIG), and then reassemble the now improved semiconductor die into a hermetic, ceramic package. Device Extraction, ENEPIG die bond pad plating and Repackaging (DEER) provides an improved die bond pad surface such that works well with either gold or aluminum bond wires in applications up to +250°C without mechanical or electrical connectivity degradation. GCI routinely exposes sample devices to +250°C bakes with 100% post bake yields so as to continuously ensure that any device processed with the DEER technology will reliably perform in high-temperature environments. Although the oil and gas industry has already expressed significant interest in the DEER process, with excellent lifetest and production application results demonstrating dramatically increased component lifetimes at elevated temperatures, this technology can also be leveraged for any application exposing ICs to harsh environments. Not only is the high-temperature reliability dramatically increased, but also the new hermetic, ceramic package protects the IC from a variety of elements and environments (i.e., corrosives and moisture).

2015 ◽  
Vol 2015 (HiTEN) ◽  
pp. 000123-000128
Author(s):  
Erick M. Spory

There is an ever-increasing demand for electronics in higher temperature applications, both in variety and volume. In many cases, the actual integrated circuit within the plastic packaging can support operation at higher temperatures, although the packaging and connectivity is unable to do so. Ultimately, there still remains a significant gap in the volume demand required for high temperature integrated circuit lines to justify support of more expensive ceramic solutions by the original component manufacturer vs. the cheaper, high-volume PEM flows. Global Circuit Innovations, Inc. has developed a manufacturable, cost-effective solution to extract the integrated circuit from any plastic encapsulated device and subsequently re-package that device into an identical ceramic footprint, with the ability to maintain high-integrity connectivity to the device and enabling functionality for 1000's of hours at temperatures at 250C and beyond. This process represents a high-value added solution to provide high-temperature integrated circuits for a large spectrum of requirements: low-volume, quick-turn evaluation of integrated circuit prototyping, as well as medium to high-volume production needs for ongoing production needs. Although both die extraction and integrated circuit pad electroless nickel/gold plating have both been performed successfully for many years in the semiconductor industry, Global Circuit Innovations, Inc. has been able to combine the two in a reliable, volume manufacturing flow to satisfy many of the stringent requirements for high-temperature applications.


2015 ◽  
Vol 2015 (HiTEN) ◽  
pp. 000116-000122
Author(s):  
Jennifer Williams ◽  
Johnson Matthey

The need for electronic applications to be able to withstand high temperatures has become more prevalent in recent years. With drilling in the oil and gas industry getting deeper, the operating temperatures are getting higher, with typical geothermal gradients of 25 °C/km. Temperatures up to 250 °C are often seen by drilling operations, which is putting a greater strain on the electronics and associated packaging. Standard methods of cooling are not viable for these harsh environments, so new technology is required to negate the effects of the extreme temperatures. As well as the use of high temperature stable electronic components, High Temperature Getters are required to remove gaseous contaminants from electronic housings to negate the associated deleterious effect on performance. The contaminating species to be removed are commonly H2O, CO2, and H2, and sometimes short chain organic molecules. Conventional getter materials can remove damaging species at temperatures up to about 80 °C. New technology is however required to eliminate these species at temperatures up to 250 °C, where existing getter formulations would certainly fail. Johnson Matthey has developed a range of getters that can remove multiple contaminants at both ambient and elevated temperatures. The first product in the series, HTA 1 can remove water and carbon dioxide. Addition of a metal oxide component in HTA 2 facilitates hydrogen removal at elevated temperatures, with capacities in excess of 70 cm3/g achieved. HTA 3 can adsorb unwanted organic contaminants in addition to removing water and carbon dioxide. HTA 4 is a combined getter capable of eliminating all of the aforementioned contaminant species. These products, combined with the unique, precision engineered Hi-Rel encapsulation (Figure 1) allow getters to be supplied pre-activated, without the end user needing to apply a thermal treatment prior to use. The product can be fitted into any hermetic device to extend the lifetime, thus decreasing the number of failures within electronic assemblies, improving system reliability and preventing operations being shut down as frequently.


2018 ◽  
Vol 48 (1) ◽  
pp. 219-243 ◽  
Author(s):  
Qi Li ◽  
Fang-Zhou Yao ◽  
Yang Liu ◽  
Guangzu Zhang ◽  
Hong Wang ◽  
...  

The demand for high-temperature dielectric materials arises from numerous emerging applications such as electric vehicles, wind generators, solar converters, aerospace power conditioning, and downhole oil and gas explorations, in which the power systems and electronic devices have to operate at elevated temperatures. This article presents an overview of recent progress in the field of nanostructured dielectric materials targeted for high-temperature capacitive energy storage applications. Polymers, polymer nanocomposites, and bulk ceramics and thin films are the focus of the materials reviewed. Both commercial products and the latest research results are covered. While general design considerations are briefly discussed, emphasis is placed on material specifications oriented toward the intended high-temperature applications, such as dielectric properties, temperature stability, energy density, and charge-discharge efficiency. The advantages and shortcomings of the existing dielectric materials are identified. Challenges along with future research opportunities are highlighted at the end of this review.


2013 ◽  
Vol 2013 (HITEN) ◽  
pp. 000075-000081
Author(s):  
Ramesh Khanna ◽  
Srinivasan Venkataraman

Harsh Environment approved components/ designs require high reliability as well as availability of power to meet their system needs. The paper will explore the various design constrains imposed on the high temperature designs. Down hole oil and gas industry requires high reliability components that can withstand high temperature. Discrete component selection, packaging and constrains imposed by various specification requirements to meet harsh environment approval are critical aspect of high-temp designs. High temperature PCB material, PCB layout techniques, trace characteristics are an important aspect of high-temperature PCB design and will be explored in the article. Buck Converters are the basic building blocks, but in order to meet system requirements to power FPGA's where low output voltage and high currents are required. Converter must be able to provide wider step down ratios with high transient response so buck converters are used. The paper with explore the various features of a buck-based POL converter design. Low noise forces the need for Low-dropout (LDO) Regulators that can operate at high Temperatures up to 210°C. This paper will address the power requirements to meet system needs.


2016 ◽  
Vol 2016 (HiTEC) ◽  
pp. 000312-000317 ◽  
Author(s):  
Mohammed Ehteshamuddin ◽  
Jebreel M. Salem ◽  
Dong Sam Ha

Abstract The decline of easily accessible reserves pushes the oil and gas industry to drill deeper to explore previously untapped wells. Temperatures in these wells can exceed 210 °C. Cooling and conventional heat extraction techniques are impractical in such a harsh environment. Reliable electronic designs that can sustain high temperature become necessary. This paper presents RF and IF microstrip combline band-pass filters for downhole communications, which can reliably operate up to 250 °C. Both filters are prototyped on a Rogers RO4003C substrate. Measured results at 250 °C show that the RF and IF filters have insertion losses of 4.53 dB and 3.45 dB, respectively. Both filters have stable performance at high temperatures. The maximum insertion loss variation with temperature for the RF filter is 1.88 dB, and bandwidth variation is 1.3 MHz. The maximum insertion loss variation with temperature for the IF filter is 1.48 dB, and bandwidth variation is 0.4 MHz. Return loss for the RF filter is more than 12 dB, and for the IF filter more than 10 dB in the passband. This paper also describes a simple method to find spacing between coupled symmetrical microstrip lines of a combline filter.


2014 ◽  
Vol 2014 (HITEC) ◽  
pp. 000319-000324
Author(s):  
Bob Hunt ◽  
Andy Tooke

This paper reviews development and qualification work performed on 225°C operating temperature modules based on ceramic thick film multi-layer substrates supporting embedded thick film resistors, assembled passive and active components with ‘chip and wire’ connections and sealing in hermetic metal and ceramic cavity packages. It considers aspects of development and importantly investigates product qualification which includes shock and vibration at elevated temperatures as well as thermal shock and temperature cycling. In conclusion there is an attempt to answer the question “Has microelectronic MCM technology matured and is it capable of servicing the widespread needs of down well 225 °C operating applications in the Oil and Gas industry?”


2014 ◽  
Vol 2014 (HITEC) ◽  
pp. 000298-000304
Author(s):  
Douglas C. MacGugan ◽  
Eric C. Abbott ◽  
J. Chris Milne

Measurement-While-Drilling (MWD) technology for oil and gas, and geothermal directional drilling exploration is pushing into ever higher temperature environments - beyond 200°C. Orientation sensors supporting these high temperature environments need to provide highly accurate elevation and tool face measurements on the order of 0.1°. Honeywell has developed a new digital high temperature down-hole accelerometer, DHTA230, capable of providing the required accuracy at the elevated temperatures of 230°C, in the rugged MWD shock and vibration environment, with expected excellent reliability and life. The DHTA230 is designed for use in the downhole environment, but is based upon a mature Honeywell accelerometer using dual vibrating beam sensing elements. These sensing elements are configured as double-ended-tuning-forks in a push-pull orientation attached onto a pendulous proof mass. This push-pull configuration provides an acceleration signal proportional to the frequency difference of the vibrating beams, an easily captured digital signal through measurement of the two vibrating beam phases. The digitized accelerometer eliminates the need for A/D electronics in the high temperature drilling environment. The DHTA230 is 0.79” in diameter with a depth of .393” at the mount flange. The ruggedized configuration of the DHTA230 is expected to provide reliable orientation measurement in high temperature direction drilling applications up to 1000h. The DHTA230 electronics incorporate ceramic hybrids with chip and wire construction. Active die are based upon proven 300°C chips developed previously for the Enhanced Geothermal Systems OM300, fabricated using Honeywell HTSOI4 process. The electronics include power conditioning providing reliable operation using a single power supply between 7V and 15V. Dual oscillator electronic circuits provide the necessary function to drive and sense the dual vibrating beams, while providing a CMOS logic level signal of the frequency pulse train. The accelerometer provides precision output up to 15g acceleration inputs, and allows sensing of higher-g vibration levels. This paper contains information on the target application, electrical and mechanical component requirements, design, fabrication approach, and initial prototype testing. The DHTA230 is expected to enter production transition in 2015.


2017 ◽  
Vol 14 (1) ◽  
pp. 17-25 ◽  
Author(s):  
Jebreel M. Salem ◽  
Dong Sam Ha

It is necessary for the oil and gas industry to drill deeper due to decrease of easily accessible natural reserves. Temperatures of deep wells can exceed 210°C, and conventional cooling and heat extraction techniques are impractical in such a harsh environment. Reliable electronic designs that can sustain high temperature become necessary. This article presents a high-temperature passive radio frequency (RF) mixer for downhole communications. The proposed mixer is designed to upconvert or downconvert the incoming signal with low conversion loss (CL), high linearity, and reliable operation at the ambient temperature up to 250°C. GaN is a wide-bandgap technology that can provide a reliable operation at high ambient temperatures, and the proposed mixer adopts a commercial GaN high-electron-mobility transistor. Measurement results indicate that the proposed mixer achieves a CL of 7.1 dB at local oscillator (LO) power of 2.5 dBm for the downconversion from 230–253 to 97.5 MHz at 250°C and the input P1dB compression point lies at 5 dBm. The designed mixer also achieves 24.5 dB RF-to-intermediate frequency (IF) isolation and 28 dB LO-to-IF isolation at 250°C. The power dissipation of the mixer is virtually zero.


2020 ◽  
Vol 60 (2) ◽  
pp. 654
Author(s):  
Graeme Ross

Due to increasing demand for energy around the world, the prevalence of global megaprojects within the oil and gas industry is increasing. Process pipes, valves and vessels may be manufactured and coated in China or Korea, where labour costs are comparatively low, before being transported to the final project location, such as Western Australia. During the transport and fabrication phase, coated steelwork may spend months or even years exposed to harsh offshore or coastal environments before going into service. This means coatings must be able to provide protection throughout an extensive construction phase, in addition to the in-service lifetime of the steel. This paper examines the demands on high temperature performance coatings both before and once in service. Test methodology and exposure data are reviewed with a focus on how modern aluminium pigmented silicone coatings provide a solution to the corrosion challenges faced in global megaprojects.


Author(s):  
Ivan S. Spiridonov ◽  
Marina S. Illarionova ◽  
Nikolay F. Ushmarin ◽  
Sergei I. Sandalov ◽  
Nikolay I. Kol'tsov

Rubber-technical products, which are used in the oil and gas industry, must have high thermal and aggressive strength. Rubbers based on butadiene-nitrile caoutchoucs are usually used for these purposes, since they have good operational properties. However, under the influence of elevated temperatures, the resistance of such rubbers to the action of petroleum products is reduced, as a result of which the physico-mechanical characteristics decrease. To improve the operational properties of rubber-technical products, various technological additives are introduced into the rubber mixtures. Such additives can be copolymers of ethylene with vinyl acetate(EVA), which increase the resistance of rubbers to action of high temperatures and aggressive media. This is due to the fact that these copolymers are well combined with butadiene-nitrile caoutchoucs, forming coordination bonds with rubber molecules, which contributes thereby increasing in the elastic-strength and performance properties of rubber. In this connection, the influence of EVA (sevillenes 11104-030, 11808-340 and MarPol 1802), differing in the content of vinyl acetate units, on the rheometric, physico-mechanical and operational properties of the rubber mixture based on butadiene-nitrile rubber in this paper was investigated. The study was carried out to improve the thermo-resistance of rubber used for the manufacture of oil and petrol resistant rubber-technical products for the oil and gas industry. The rubber mixture was prepared on laboratory rolls and standard samples were vulcanized in an electrically heated press. The study of rheometric properties has shown that EVA affect the characteristics of the vulcanization process of a rubber mixture. For vulcanizates, the influence of the content of EVA in a rubber mixture on the physical and mechanical properties was studied: the conditional tensile strength, elongation at break, tear resistance, rebound elasticity, Shore A hardness, relative compression deformation. The effect of the standard liquid ZHR-1 on the change in these properties, as well as the degree of swelling of the vulcanizates after their daily soaking in the standard liquid SZHR-1 and a mixture of isooctane + toluene, was studied. It has been established that vulcanizate of a rubber mixture containing sevilene 11808-340 is characterized by the best physico-mechanical and operational properties.


Sign in / Sign up

Export Citation Format

Share Document