A novel low cost roll-to-roll manufacturing compatible ultra-thin chip integration and direct metal interconnection process for flexible hybrid electronics

2019 ◽  
Vol 2019 (NOR) ◽  
pp. 000006-000011
Author(s):  
N Palavesam ◽  
W Hell ◽  
A Drost ◽  
C Landesberger ◽  
C Kutter ◽  
...  

Abstract The emerging Internet-of-Everything (IoE) framework aims to revolutionise human-machine interaction where billions of sensors and actuators placed on almost every physical object will be tasked to communicate with each other. A substantial fraction of these devices will be placed on locations that would undergo repeated bending deformation (such as sensors for prosthetics, human body and robots) or on curved surfaces (like interior as well as exterior of automobiles, buildings and industrial equipment). Therefore, flexible sensors and actuators delivering high performance at low power requirements and manufactured at low cost will be the key for successful implementation of IoE. Though massive developments achieved in printed and organic electronics have enabled them to fulfil the required flexibility and low cost demands of IoE applications, printed and organic electronics often fall short of the high performance and low power requirements demonstrated by silicon ICs. Flexible chip foil packages fabricated by integrating ultra-thin bare silicon ICs fulfil the aforementioned demands posed by IoE applications and therefore, they are often considered as potential enablers of IoE. Here, we present an innovative roll-to-roll manufacturing compatible low cost approach for direct metal interconnection and integration of ultra-thin silicon ICs. The thickness of the fabricated flexible packages with the integrated and interconnected ultra-thin ICs were as thin as 100 μm. Electrical measurements conducted on the 60 fabricated samples with interconnected flexible ultra-thin ICs revealed a very promising yield of 94%.

Author(s):  
John H. Lau ◽  
Y. S. Chan ◽  
S. W. Ricky Lee

A low-cost (with bare chips) and high (electrical, thermal, and mechanical) performance 3D IC integration system-in-package (SiP) is designed and described. This system consists of a silicon interposer with through-silicon vias (TSV) [1–24] and redistribution layers (RDL), which carries the high-power flip chips with microbumps on its top surface and the low-power chips at its bottom surface. TSVs in the high- and low-power chips are optional but should be avoided. The backside of the high-power chips is attached to a heat spreader with or w/o a heat sink. This 3D IC integration system is supported (packaged) by a simple conventional organic substrate. The heat spreader (with or w/o heat sink) and the substrate are connected by a ring stiffener, which provides adequate standoff for the 3D IC integration system. This novel structural design offers potential solutions for high-power, high-performance, high pin-count, ultra fine-pitch, small real-estate, and low-cost applications. Thermal management and reliability of the proposed systems are demonstrated by simulations based on heat-transfer theory and time and temperature dependent creep theory.


1992 ◽  
Vol 264 ◽  
Author(s):  
Chung W. Ho ◽  
Sharon McAfee-Hunter

AbstractThin-film multichip modules (i.e. MCM-D) can provide simple, low-cost packaging and interconnect options for interconnecting high-density, high-performance devices. The following is an overview of an MCM-D technology that can be implemented on top of several substrate materials. Tradeoffs will be discussed related to using different substrate materials and the corresponding implications from the assembly point of view. The MCM-D manufacturing process is reviewed and the subsequent reliability results are discussed.


2013 ◽  
Vol 373-375 ◽  
pp. 363-366
Author(s):  
Jing Sheng Yu ◽  
Hong Qiang Sun

It describes the basic principle of velocity parameters measuring of car in operation, establishes the related mathematical model. It disigns an intelligent, integrated digital solutions to combination instrumentation of the car based on MC9S12DP256B. This system has advantages of high performance, high precision, low cost, low power consumption, good stability, sensitive respond and expandability. The system measures and shows online velocity parameters of the car. It has fuction such as safety alarm. The system reserves bus interface such as SCI and CAN, correspondences easily with other electronic engine control systems of the car.


2013 ◽  
Vol 1553 ◽  
Author(s):  
R. A. Sporea ◽  
S. Georgakopoulos ◽  
X. Xu ◽  
X. Guo ◽  
M. Shkunov ◽  
...  

ABSTRACTIn order to achieve high performance, the design of devices for large-area electronics needs to be optimized despite material or fabrication shortcomings. In numerous emerging technologies thin-film transistor (TFT) performance is hindered by contact effects. Here, we show that contact effects can be used constructively to create devices with performance characteristics unachievable by conventional transistor designs. Source-gated transistors (SGTs) are not designed with increasing transistor speed, mobility or sub-threshold slope in mind, but rather with improving certain aspects critical for real-world large area electronics such as stability, uniformity, power efficiency and gain. SGTs can achieve considerably lower saturation voltage and power dissipation compared to conventional devices driven at the same current; higher output impedance for over two orders of magnitude higher intrinsic gain; improved bias stress stability in amorphous materials; higher resilience to processing variations; current virtually independent of source-drain gap, source-gate overlap and semiconductor thickness variations. Applications such as amplifiers and drivers for sensors and actuators, low cost large area analog or digital circuits could greatly benefit from incorporating the SGT architecture.


2021 ◽  
Vol 4 (3) ◽  
pp. 40
Author(s):  
Abdul Majeed

During the ongoing pandemic of the novel coronavirus disease 2019 (COVID-19), latest technologies such as artificial intelligence (AI), blockchain, learning paradigms (machine, deep, smart, few short, extreme learning, etc.), high-performance computing (HPC), Internet of Medical Things (IoMT), and Industry 4.0 have played a vital role. These technologies helped to contain the disease’s spread by predicting contaminated people/places, as well as forecasting future trends. In this article, we provide insights into the applications of machine learning (ML) and high-performance computing (HPC) in the era of COVID-19. We discuss the person-specific data that are being collected to lower the COVID-19 spread and highlight the remarkable opportunities it provides for knowledge extraction leveraging low-cost ML and HPC techniques. We demonstrate the role of ML and HPC in the context of the COVID-19 era with the successful implementation or proposition in three contexts: (i) ML and HPC use in the data life cycle, (ii) ML and HPC use in analytics on COVID-19 data, and (iii) the general-purpose applications of both techniques in COVID-19’s arena. In addition, we discuss the privacy and security issues and architecture of the prototype system to demonstrate the proposed research. Finally, we discuss the challenges of the available data and highlight the issues that hinder the applicability of ML and HPC solutions on it.


2021 ◽  
Vol 7 (4) ◽  
pp. 210001-210001
Author(s):  
Maoxuan Sun ◽  
Bao-Yi Ren ◽  
Ling-Hai Xie ◽  
◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document