A novel, low-cost deep trench decoupling capacitor for high-performance, low-power bulk CMOS applications

Author(s):  
Chengwen Pei ◽  
Roger Booth ◽  
Herbert Ho ◽  
Naoyoshi Kusaba ◽  
Xi Li ◽  
...  
Author(s):  
John H. Lau ◽  
Y. S. Chan ◽  
S. W. Ricky Lee

A low-cost (with bare chips) and high (electrical, thermal, and mechanical) performance 3D IC integration system-in-package (SiP) is designed and described. This system consists of a silicon interposer with through-silicon vias (TSV) [1–24] and redistribution layers (RDL), which carries the high-power flip chips with microbumps on its top surface and the low-power chips at its bottom surface. TSVs in the high- and low-power chips are optional but should be avoided. The backside of the high-power chips is attached to a heat spreader with or w/o a heat sink. This 3D IC integration system is supported (packaged) by a simple conventional organic substrate. The heat spreader (with or w/o heat sink) and the substrate are connected by a ring stiffener, which provides adequate standoff for the 3D IC integration system. This novel structural design offers potential solutions for high-power, high-performance, high pin-count, ultra fine-pitch, small real-estate, and low-cost applications. Thermal management and reliability of the proposed systems are demonstrated by simulations based on heat-transfer theory and time and temperature dependent creep theory.


2019 ◽  
Vol 2019 (NOR) ◽  
pp. 000006-000011
Author(s):  
N Palavesam ◽  
W Hell ◽  
A Drost ◽  
C Landesberger ◽  
C Kutter ◽  
...  

Abstract The emerging Internet-of-Everything (IoE) framework aims to revolutionise human-machine interaction where billions of sensors and actuators placed on almost every physical object will be tasked to communicate with each other. A substantial fraction of these devices will be placed on locations that would undergo repeated bending deformation (such as sensors for prosthetics, human body and robots) or on curved surfaces (like interior as well as exterior of automobiles, buildings and industrial equipment). Therefore, flexible sensors and actuators delivering high performance at low power requirements and manufactured at low cost will be the key for successful implementation of IoE. Though massive developments achieved in printed and organic electronics have enabled them to fulfil the required flexibility and low cost demands of IoE applications, printed and organic electronics often fall short of the high performance and low power requirements demonstrated by silicon ICs. Flexible chip foil packages fabricated by integrating ultra-thin bare silicon ICs fulfil the aforementioned demands posed by IoE applications and therefore, they are often considered as potential enablers of IoE. Here, we present an innovative roll-to-roll manufacturing compatible low cost approach for direct metal interconnection and integration of ultra-thin silicon ICs. The thickness of the fabricated flexible packages with the integrated and interconnected ultra-thin ICs were as thin as 100 μm. Electrical measurements conducted on the 60 fabricated samples with interconnected flexible ultra-thin ICs revealed a very promising yield of 94%.


1992 ◽  
Vol 264 ◽  
Author(s):  
Chung W. Ho ◽  
Sharon McAfee-Hunter

AbstractThin-film multichip modules (i.e. MCM-D) can provide simple, low-cost packaging and interconnect options for interconnecting high-density, high-performance devices. The following is an overview of an MCM-D technology that can be implemented on top of several substrate materials. Tradeoffs will be discussed related to using different substrate materials and the corresponding implications from the assembly point of view. The MCM-D manufacturing process is reviewed and the subsequent reliability results are discussed.


2013 ◽  
Vol 373-375 ◽  
pp. 363-366
Author(s):  
Jing Sheng Yu ◽  
Hong Qiang Sun

It describes the basic principle of velocity parameters measuring of car in operation, establishes the related mathematical model. It disigns an intelligent, integrated digital solutions to combination instrumentation of the car based on MC9S12DP256B. This system has advantages of high performance, high precision, low cost, low power consumption, good stability, sensitive respond and expandability. The system measures and shows online velocity parameters of the car. It has fuction such as safety alarm. The system reserves bus interface such as SCI and CAN, correspondences easily with other electronic engine control systems of the car.


2020 ◽  
Vol 17 (4) ◽  
pp. 1852-1856
Author(s):  
P. Bhuvaneshwari ◽  
T. R. Jaya Chandra Lekha

This project proposes multilayer advanced high-performance bus architecture for low power applications. The proposed AHB architecture consists of the bus arbiter and the bus tracer (A.R.M.A., 1999. Specification (Rev 2.0) ARM IHI0011A). The bus arbiter, which is self motivated selects the input packet based on the control signals of the incoming packet. So that arbitration leads to a maximum performance. The On-Chip bus is an important system-on-chip infrastructure that connects major hardware components. Monitoring the on-chip bus signals is crucial to the SoC debugging and performance analysis/optimization (Gu, R.T., et al., 2007. A Low Cost Tile-Based 3D Graphics Full Pipeline with Real-Time Performance Monitoring Support for OpenGL ES in Consumer Electronics. 2007 IEEE International Symposium on Consumer Electronics, June; IEEE. pp.1–6). But, such signals are difficult to observe since they are deeply embedded in a SoC and there are often no sufficient I/O pins to access these signals. Therefore, a straightforward approach is to embed a bus tracer in SoC to capture the bus signal trace and store the trace in on-chip storage such as the trace memory which could then be off loaded to outside world for analysis. The bus tracer is capable of capturing the bus trace with different resolutions, all with efficient built in compression mechanisms such as dictionary based compression scheme for address and control signals and differential compression scheme for data. To improve the compression ratio matrix based compression which is lossless compression is used instead of differential compression. This system is designed using Verilog HDL, simulated using Modelsim and synthesized using Xilinx software.


Sign in / Sign up

Export Citation Format

Share Document