scholarly journals Enhancement Mode GaN-FETs in Extreme Temperature Conditions, Part I: Static Parasitic Parameters

2021 ◽  
Vol 2021 (HiTEC) ◽  
pp. 000048-000052
Author(s):  
Martijn S. Duraij ◽  
Yudi Xiao ◽  
Gabriel Zsurzsan ◽  
Zhe Zang

Abstract Smaller packaging and sizing of power electronics and higher operating temperatures of switching devices call for an analysis and verification on the impact of the parasitic components in these devices. Found drift mechanisms in an eGaN-FET are studied by literature and related to measurements performed in extreme temeprature conditions far beyond the manufacturer recommended operating range. A thermal chamber was build to precisely measure the effect of temperature in these devices using a curve tracer. It is found that the increment in RDSon, IDSS, IGSS and VSD can be justified by the theory and backed up by measurements. It is also found that the particular eGaN-FET can be suited for extreme temperature operating conditions.

Author(s):  
Sumit Mahajan ◽  
Rahul Chhibber

This article deals with the development of shielded metal arc welding electrodes for P22/P91 welds. A comparison has also been drawn with commercially available electrodes. P22 low alloy steel matching electrodes developed in the laboratory using a mixture design approach was employed to fabricate the dissimilar weld. Experimentations were performed to evaluate the microstructure and mechanical properties of microhardness, tensile strength, and impact energy of the welds. The impact strength was found to improve by 19% for a laboratory developed electrode made welds as compared to the commercial electrodes. The weld chemistry investigations indicate that the weld fabricated with laboratory-developed electrodes have a higher amount of chromium and molybdenum. These elements are known to enhance the corrosion resistance of joint, thereby imparting enhanced structural integrity in high temperature operating conditions. The electrodes designed and developed in this work are found to enhance the properties of P22/P91 joint much better as compared to that with the commercial electrodes.


Author(s):  
Paramvir Singh ◽  
Varun Goel ◽  
SR Chauhan

Biodiesel is a promising fuel which shows potential and gradually received attention as a best alternate feedstock for diesel engine. Previous investigations have shown that use of double biofuels in a diesel engine can be a promising aspect for complete elimination of diesel from compression ignition engines which will decrease our dependency on fossil fuels. The tribological performance of injection system is primarily based on the lubricity characteristics of the fuel. So, it is imperative to a more diversified research about the impact of using double biofuels in engine. In the present investigation, different biodiesel-oil blends were investigated using the ASTM D6079 by the reciprocatory friction monitor. The effect of temperature variation on lubricity characteristics was also studied. The biodiesel-oil blends shows improvement in results as compared to diesel. Biodiesel is prone to oxidation due to availability of unsaturation in their moieties. The effects of oxidation on lubricity characteristics were also studied. It was also found that the operating conditions collectively affected the lubricity characteristics of tested feedstocks.


2013 ◽  
Vol 199 ◽  
pp. 137-142 ◽  
Author(s):  
Marcin Frycz

This paper presents the results of studies which characterize the dynamic viscosity changes of ferrofluid in terms of changes of selected physical conditions of its work. Knowledge of the variation of the ferrofluids density, lubricity, and especially viscosity depending on the concentration of Fe3O4 magnetic particles, temperature, deformation speed and impact direction, type and value of magnetic induction, it is necessary to analyze the changes of operating conditions of the slide journal bearing ferrofluids lubricated. This theme is the broader context of the authors interests and his research. In this article has been briefly characterized the viscous properties of the tested ferrofluid. There also has been shown an analysis of the impact of changes in temperature and velocity of deformation on the change of ferrofluids dynamic viscosity. The paper has been summarized the observations and conclusions reached on the basis of analysis results.


2021 ◽  
Vol 2021 (HiTEC) ◽  
pp. 000053-000057
Author(s):  
Martijn S. Duraij ◽  
Yudi Xiao ◽  
Gabriel Zsurzsan ◽  
Zhe Zang

Abstract Parasitic components in eGaN-FETs impact the dynamic performance of switching stages. The capacitances seen, primarily on the output characteristics, of these devices are a main contributor towards switching losses and therefor converter efficiency. Additionally, the threshold voltage of the device has an impact towards the switching speed and therefore the efficiency of a power stage. This study shows the impact of extreme temperatures towards the parasitics that impact the switching behaviour of a power stage. A literature research is conducted exploring the various mechanisms and temperature dependancies, which are then related towards transient operations of eGaN-FETs. A device was chosen to perform measurements on output-, reverse transfer capacitance and threshold voltage while increasing temperature from 100°C op to 225°C. The presented results show a large impact of temperature in these parasisic elements that show that high temperature switch-mode power converters need additional design work to ensure switching performance and lifetime.


2019 ◽  
pp. 155-161 ◽  
Author(s):  
Ivan Beltran

Environmental temperature has fitness consequences on ectotherm development, ecology and behaviour. Amphibians are especially vulnerable because thermoregulation often trades with appropriate water balance. Although substantial research has evaluated the effect of temperature in amphibian locomotion and physiological limits, there is little information about amphibians living under extreme temperature conditions. Leptodactylus lithonaetes is a frog allegedly specialised to forage and breed on dark granitic outcrops and associated puddles, which reach environmental temperatures well above 40 ˚C. Adults can select thermally favourable microhabitats during the day while tadpoles are constrained to rock puddles and associated temperature fluctuations; we thus established microhabitat temperatures and tested whether the critical thermal maximum (CTmax) of L. lithonaetes is higher in tadpoles compared to adults. In addition, we evaluated the effect of water temperature on locomotor performance of tadpoles. Contrary to our expectations, puddle temperatures were comparable and even lower than those temperatures measured in the microhabitats used by adults in the daytime. Nonetheless, the CTmax was 42.3 ˚C for tadpoles and 39.7 ˚C for adults. Regarding locomotor performance, maximum speed and maximum distance travelled by tadpoles peaked around 34 ˚C, approximately 1 ˚C below the maximum puddle temperatures registered in the puddles. In conclusion, L. lithonaetes tadpoles have a higher CTmax compared to adults, suggesting a longer exposure to extreme temperatures that lead to maintain their physiological performance at high temperatures. We suggest that these conditions are adaptations to face the strong selection forces driven by this granitic habitat.


2005 ◽  
Vol 33 (3) ◽  
pp. 156-178 ◽  
Author(s):  
T. J. LaClair ◽  
C. Zarak

Abstract Operating temperature is critical to the endurance life of a tire. Fundamental differences between operations of a tire on a flat surface, as experienced in normal highway use, and on a cylindrical test drum may result in a substantially higher tire temperature in the latter case. Nonetheless, cylindrical road wheels are widely used in the industry for tire endurance testing. This paper discusses the important effects of surface curvature on truck tire endurance testing and highlights the impact that curvature has on tire operating temperature. Temperature measurements made during testing on flat and curved surfaces under a range of load, pressure and speed conditions are presented. New tires and re-treaded tires of the same casing construction were evaluated to determine the effect that the tread rubber and pattern have on operating temperatures on the flat and curved test surfaces. The results of this study are used to suggest conditions on a road wheel that provide highway-equivalent operating conditions for truck tire endurance testing.


2019 ◽  
pp. 43-48
Author(s):  
Ben Nengjun ◽  
Zhou Pengfei ◽  
Oleksandr Labartkava ◽  
Mykhailo Samokhin

This work involves an analysis of high-chromium high-temperature deformable wieldable nickel alloys for use in GTE repair assemblies. It is shown that the alloys EP868 (VZh98) and Haynes 230 can be used in welded assemblies with an operating temperature of 800-1100 °C. The alloys Nimonic 81, Nimonic 91, IN 935, IN 939, and Nicrotan 2100 GT also have a high potential for use in welded assemblies. They are characterized by a combination of good weldability, high-temperature strength, and resistance to scaling. There have been conducted studies on high-temperature salt corrosion of model nickel alloys. They allowed establishing the patterns of the impact of base metal alloying with chromium, aluminum, titanium, cobalt, tungsten, molybdenum, niobium, tantalum and rare earth metals on the critical temperature of the start of salt corrosion Tcor and the alloy mass loss. It has been established that alloys with a moderate concentration (13-16%) of chromium can possess satisfactory hightemperature corrosion resistance (HTC resistance) under the operating conditions of ship GTE. The HTC resistance of CrAl-Ti alloys improves upon reaching the ratio Ti/Al ˃ 1. Meanwhile, the ratio Ti/Al ˂ 1 promotes the formation of corrosion products with low protective properties. The positive effect of tantalum on the HTC resistance of alloys is manifested at higher test temperatures than that of titanium, and the total content of molybdenum and tungsten in alloys is limited by the condition 8Mo2 – 2W2 = 89. The presence of refractory elements stabilizes the strengthening phase and prevents formation of the ɳ-phase. However, their excess promotes formation of the embrittling topologically close packed (TCP) phases and boundary carbides of an unfavorable morphology. Based on the studies of the HTC resistance, there has been identified a class of model high-temperature corrosionresistant nickel alloys with a moderate or high chromium content (30%), Ti/Al ˃ 1, and a balanced content of refractory and rare-earth elements.


2014 ◽  
pp. 298-301 ◽  
Author(s):  
Arnaud Petit

Bois-Rouge factory, an 8000 t/d cane Reunionese sugarcane mill, has fully equipped its filtration station with vacuum belt press filters since 2010, the first one being installed in 2009. The present study deals with this 3-year experience and discusses operating conditions, electricity consumption, performance and optimisation. The comparison with the more classical rotary drum vacuum filter station of Le Gol sugar mill highlights advantages of vacuum belt press filters: high filtration efficiency, low filter cake mass and sucrose content, low total solids content in filtrate and low power consumption. However, this technology needs a mud conditioning step and requires a large amount of water to improve mud quality, mixing of flocculant and washing of filter belts. The impact on the energy balance of the sugar mill is significant. At Bois-Rouge mill, studies are underway to reduce the water consumption by recycling low d.s. filtrate and by dry cleaning the filter belts.


Author(s):  
И.В. Бачериков ◽  
Б.М. Локштанов

При проектировании открытых и закрытых хранилищ измельченных сыпучих материалов древесных материалов, таких как щепа и опилки, большое значение имеет угол естественного откоса (статический и динамический) этих материалов. В технической литературе приводятся противоречивые сведения о величине этих углов, что приводит к ошибкам при проектировании складов. В справочных данных не учитываются условия, в которых эксплуатируются емкости для хранения сыпучих материалов, свойства и состояние этих сыпучих материалов. В свою очередь, ошибки при проектировании приводят к проблемам (зависание, сводообразование, «затопление» и т. д.) и авариям при эксплуатации бункеров и силосов на производстве. В статье представлены сведения, посвященные влиянию влажности и температуры на угол естественного откоса сыпучих материалов. На основании лабораторных и натурных экспериментов, проведенных с помощью специально разработанных методик и установок, была скорректирована формула для определения углов естественного откоса (статического и динамического) для измельченных древесных материалов в зависимости от их фракционного и породного состава, влажности (абсолютной и относительной) и температуры. При помощи скорректированной формулы можно определить угол естественного откоса древесных сыпучих материалов со среднегеометрическим размером частицы от 0,5 мм до 15 мм (от древесной пыли до технологической щепы) в различных производственных условиях. Статья может быть полезна проектировщикам при расчете угла наклона граней выпускающей воронки бункеров и силосов предприятий лесной отрасли и целлюлозо-бумажной промышленности. In the design of open and closed storage warehouses chopped wood materials for bulk materials such as wood chips and sawdust, great importance has an angle of repose (static and dynamic) of these materials. In the technical literature are conflicting reports about the magnitude of these angles, which leads to errors in the design of warehouses. In the referencesdoes not take into account the conditions under which operated capacities for storage of bulk materials, and properties and condition of the bulk material. The design errors lead to problems (hanging, arching, «flooding», etc.) and accidents in the operation of hoppers and silos at the mills. The article provides information on the impact of humidity and temperature on the angle of repose of granular materials. On the basis of laboratory and field experiments, conducted with the help of specially developed techniques and facilities has been adjusted formula for determining the angle of repose (static and dynamic) for the shredded wood materials depending on their fractional and species composition, humidity (absolute and relative) and temperature. It is possible, by using the corrected formula, to determine the angle of repose of loose wood materials with average particle size of from 0.5 mm to 15 mm (wood dust to pulpchips) in various operating conditions. The article can be helpful to designers in the calculation of the angle of inclination of the funnel faces produces bunkers and silos forest industries and pulp and paper industry.


Membranes ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 461
Author(s):  
Fu Yang ◽  
Zhengkun Huang ◽  
Jun Huang ◽  
Chongde Wu ◽  
Rongqing Zhou ◽  
...  

Ultrafiltration is a promising, environment-friendly alternative to the current physicochemical-based tannery wastewater treatment. In this work, ultrafiltration was employed to treat the tanning wastewater as an upstream process of the Zero Liquid Discharge (ZLD) system in the leather industry. The filtration efficiency and fouling behaviors were analyzed to assess the impact of membrane material and operating conditions (shear rate on the membrane surface and transmembrane pressure). The models of resistance-in-series, fouling propensity, and pore blocking were used to provide a comprehensive analysis of such a process. The results show that the process efficiency is strongly dependent on the operating conditions, while the membranes of either PES or PVDF showed similar filtration performance and fouling behavior. Reversible resistance was the main obstacle for such process. Cake formation was the main pore blocking mechanism during such process, which was independent on the operating conditions and membrane materials. The increase in shear rate significantly increased the steady-state permeation flux, thus, the filtration efficiency was improved, which resulted from both the reduction in reversible resistance and the slow-down of fouling layer accumulate rate. This is the first time that the fouling behaviors of tanning wastewater ultrafiltration were comprehensively evaluated, thus providing crucial guidance for further scientific investigation and industrial application.


Sign in / Sign up

Export Citation Format

Share Document