LTCC-3D FLOW FOCUSING FLUIDIC MICROREACTOR FOR NANOPARTICLE FABRICATION AND PRODUCTION SCALE-OUT

2013 ◽  
Vol 2013 (CICMT) ◽  
pp. 000110-000117
Author(s):  
Mario Ricardo Gongora-Rubio ◽  
Juliana de Novais Schianti ◽  
Houari Cobas Gomez ◽  
Andre da Costa Teves

Miniaturization of chemical processes is becoming a must for green chemistry and sustainable industry processes, so technological research in this direction is well received. Continuous microreactor systems hold many potential benefits over batch reactors allowing: high surface-to-volume ratio, fine adjustment of chemical reaction residence times, small thermal inertia and fast changes in temperature. Advantages of multilayer green ceramics for microprocess applications include: LTCC substrate is chemically inert to most solvents, it has a high contact angle, presents low thermal coefficient of expansion, can withstand high operational temperatures and high internal pressures. For these reasons, LTCC-based microsystem technologies allow the implementation of different unitary operations for chemical process, making it an enabling technology for the miniaturization of chemical processes. In fact, recently LTCC microfluidic reactors have been used to produce micro and nanoparticles with excellent control of size distribution and morphology. The present work provides a report on the performance of a 3D LTCC flow focusing Microfluidic reactor designed to fabricate Nanoparticles using nano precipitation through an anti-solvent, with electric potential size tuning. We also implement an approach to nanoparticle production scale-out.

2013 ◽  
Vol 10 (3) ◽  
pp. 102-108 ◽  
Author(s):  
Mario Ricardo Gongora-Rubio ◽  
Juliana de Novais Schianti ◽  
Houari Cobas Gomez ◽  
Andre da Costa Teves

Miniaturization of chemical processes is becoming a must for green chemistry and sustainable industry processes, so technological research in this direction is well received. Continuous microreactor systems hold many potential benefits over batch reactors, in that they allow: high surface-to-volume ratio, fine adjustment of chemical reaction residence times, small thermal inertia, and fast changes in temperature. Advantages of multilayer green ceramics for microprocess applications include: that the LTCC substrate is chemically inert to most solvents, that it has a high contact angle, that it presents low thermal coefficient of expansion, and that it can withstand high operational temperatures and high internal pressures. For these reasons, LTCC-based microsystem technologies allow the implementation of different unitary operations for chemical processes, making it an enabling technology for the miniaturization of chemical processes. In fact, recently, LTCC microfluidic reactors have been used to produce microparticles and nanoparticles with excellent control of size distribution and morphology. The present work provides a report on the performance of a 3D LTCC coaxial flow focusing micro-fluidic reactor designed to fabricate microparticles and nano-particles using nanoprecipitation through an antisolvent; with electric potential size tuning. We also implement an approach to particle production scale-out.


2015 ◽  
Vol 2015 (CICMT) ◽  
pp. 000275-000280 ◽  
Author(s):  
Houari Cobas Gomez ◽  
Mario Ricardo Gongora-Rubio ◽  
Bianca Oliveira Agio ◽  
Vanessa Tiemi Kimura ◽  
Adriano Marim de Oliveira ◽  
...  

Nanoprecipitation is a nanonization technique used for nanoparticle generation. Several fields, like pharmacology and fine chemistry, make use of such technique. Typically are used a bulky batch mechanical processes rendering high polydispersity index of generated nanoparticles, poorly particle size reproducibility and energy wasting. LTCC-based microsystem technologies allow the implementation of different unitary operations for chemical process, making it an enabling technology for the miniaturization of chemical processes. In fact, recently LTCC microfluidic reactors have been used to produce micro and nanoparticles with excellent control of size distribution and morphology. The present work provides a report on the performance of a 3D LTCC flow focusing Microfluidic device designed to fabricate polymeric nanocapsules for Hydrocortisone drug encapsulation, using nanoprecipitation route. Monodisperse Hydrocortisone nanocapsules were obtained with sizes (Tp) from 188.9 nm to 459.1 nm with polydispersity index (PDI) from 0.102 to 0.235.


2012 ◽  
Vol 2012 (CICMT) ◽  
pp. 000294-000302
Author(s):  
Mário Ricardo Gongora-Rubio ◽  
Kellen Heloizy Garcia Freitas ◽  
Juliana de Novais Schianti ◽  
Adriano Marim de Oliveira ◽  
Natália Neto Pereira Cerize ◽  
...  

The chemical industry is moving toward miniaturization with the help of microreaction technology and automated control systems. Besides the evident advantages of Microtechnology like improved portability, reduced energy use, safety and flexibility, the main advantage associated with the miniaturization of chemical processes is the increased microreactor control due to predictable thermal and mass transportation properties. We understand that LTCC Microsystem technology have a relevant role in this area. LTCC Microfluidic devices have been applied to carry out several chemical processes operations, including mixing, separation, chemical reactions, heterogeneous catalysis, heat exchange and so on. More recently, LTCC microfluidic systems have also been used to produce micro- and nanoparticles with excellent control of size distribution, morphology and constitution. The present work give an account of some LTCC Microfluidic devices aimed for Micro and Nanoparticle fabrication. At this time we report devices for: Emulsion generation for obtaining alginate microparticles by ionic gelation; Electrospinning applications, Microreactors for silver nanoparticle production and 3D Flow focusing devices for pharmaceutical active nanocrystallization.


Biocatalysis ◽  
2016 ◽  
Vol 1 (1) ◽  
Author(s):  
Enzo Laurenti ◽  
Ardson dos Santos Vianna Jr.

AbstractMicrofluidic reaction devices are a very promising technology for chemical and biochemical processes. In microreactors, the micro dimensions, coupled with a high surface area/volume ratio, permit rapid heat exchange and mass transfer, resulting in higher reaction yields and reaction rates than in conventional reactors. Moreover, the lower energy consumption and easier separation of products permit these systems to have a lower environmental impact compared to macroscale, conventional reactors. Due to these benefits, the use of microreactors is increasing in the biocatalysis field, both by using enzymes in solution and their immobilized counterparts. Following an introduction to the most common applications of microreactors in chemical processes, a broad overview will be given of the latest applications in biocatalytic processes performed in microreactors with free or immobilized enzymes. In particular, attention is given to the nature of the materials used as a support for the enzymes and the strategies employed for their immobilization. Mathematical and engineering aspects concerning fluid dynamics in microreactors were also taken into account as fundamental factors for the optimization of these systems.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Takehiko Arai ◽  
Tatsuaki Okada ◽  
Satoshi Tanaka ◽  
Tetsuya Fukuhara ◽  
Hirohide Demura ◽  
...  

AbstractThe thermal infrared imager (TIR) onboard the Hayabusa2 spacecraft performed thermographic observations of the asteroid 162173 Ryugu (1999 JU$$_3$$ 3 ) from June 2018 to November 2019. Our previous reports revealed that the surface of Ryugu was globally filled with porous materials and had high surface roughness. These results were derived from making the observed temperature maps of TIR using a projection method onto the shape model of Ryugu as geometric corrections. The pointing directions of TIR were calculated using an interpolation of data from the SPICE kernels (NASA/NAIF) during the periods when the optical navigation camera (ONC) and the light detection and ranging (LIDAR) observations were performed. However, the mapping accuracy of the observed TIR images was degraded when the ONC and LIDAR were not performed with TIR. Also, the orbital and attitudinal fluctuations of Hayabusa2 increased the error of the temperature maps. In this paper, to solve the temperature image mapping problems, we improved the correction method by fitting all of the observed TIR images with the surface coordinate addressed on the high-definition shape model of Ryugu (SFM 800k v20180804). This correction adjusted the pointing direction of TIR by rotating the TIR frame relative to the Hayabusa2 frame using a least squares fit. As a result, the temperature maps spatially spreading areas were converged within high-resolved $$0.5^\circ$$ 0 . 5 ∘ by $$0.5^\circ$$ 0 . 5 ∘ maps. The estimated thermal inertia, for instance, was approximately 300$$\sim$$ ∼ 350 Jm$$^{-2}$$ - 2 s$$^{-0.5}$$ - 0.5 K$$^{-1}$$ - 1 at the hot area of the Ejima Saxum. This estimation was succeeded in case that the surface topographic features were larger than the pixel scale of TIR. However, the thermal inertia estimation of smooth terrains, such as the Urashima crater, was difficult because of surface roughness effects, where roughness was probably much smaller than the pixel scale of TIR.


2021 ◽  
Vol 22 (12) ◽  
pp. 6357
Author(s):  
Kinga Halicka ◽  
Joanna Cabaj

Sensors and biosensors have found applications in many areas, e.g., in medicine and clinical diagnostics, or in environmental monitoring. To expand this field, nanotechnology has been employed in the construction of sensing platforms. Because of their properties, such as high surface area to volume ratio, nanofibers (NFs) have been studied and used to develop sensors with higher loading capacity, better sensitivity, and faster response time. They also allow to miniaturize designed platforms. One of the most commonly used techniques of the fabrication of NFs is electrospinning. Electrospun NFs can be used in different types of sensors and biosensors. This review presents recent studies concerning electrospun nanofiber-based electrochemical and optical sensing platforms for the detection of various medically and environmentally relevant compounds, including glucose, drugs, microorganisms, and toxic metal ions.


Author(s):  
Cynthia Nagy ◽  
Robert Huszank ◽  
Attila Gaspar

AbstractThis paper aims at studying open channel geometries in a layer-bed-type immobilized enzyme reactor with computer-aided simulations. The main properties of these reactors are their simple channel pattern, simple immobilization procedure, regenerability, and disposability; all these features make these devices one of the simplest yet efficient enzymatic microreactors. The high surface-to-volume ratio of the reactor was achieved using narrow (25–75 μm wide) channels. The simulation demonstrated that curves support the mixing of solutions in the channel even in strong laminar flow conditions; thus, it is worth including several curves in the channel system. In the three different designs of microreactor proposed, the lengths of the channels were identical, but in two reactors, the liquid flow was split to 8 or 32 parallel streams at the inlet of the reactor. Despite their overall higher volumetric flow rate, the split-flow structures are advantageous due to the increased contact time. Saliva samples were used to test the efficiencies of the digestions in the microreactors. Graphical abstract


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1109
Author(s):  
Varnakavi. Naresh ◽  
Nohyun Lee

A biosensor is an integrated receptor-transducer device, which can convert a biological response into an electrical signal. The design and development of biosensors have taken a center stage for researchers or scientists in the recent decade owing to the wide range of biosensor applications, such as health care and disease diagnosis, environmental monitoring, water and food quality monitoring, and drug delivery. The main challenges involved in the biosensor progress are (i) the efficient capturing of biorecognition signals and the transformation of these signals into electrochemical, electrical, optical, gravimetric, or acoustic signals (transduction process), (ii) enhancing transducer performance i.e., increasing sensitivity, shorter response time, reproducibility, and low detection limits even to detect individual molecules, and (iii) miniaturization of the biosensing devices using micro-and nano-fabrication technologies. Those challenges can be met through the integration of sensing technology with nanomaterials, which range from zero- to three-dimensional, possessing a high surface-to-volume ratio, good conductivities, shock-bearing abilities, and color tunability. Nanomaterials (NMs) employed in the fabrication and nanobiosensors include nanoparticles (NPs) (high stability and high carrier capacity), nanowires (NWs) and nanorods (NRs) (capable of high detection sensitivity), carbon nanotubes (CNTs) (large surface area, high electrical and thermal conductivity), and quantum dots (QDs) (color tunability). Furthermore, these nanomaterials can themselves act as transduction elements. This review summarizes the evolution of biosensors, the types of biosensors based on their receptors, transducers, and modern approaches employed in biosensors using nanomaterials such as NPs (e.g., noble metal NPs and metal oxide NPs), NWs, NRs, CNTs, QDs, and dendrimers and their recent advancement in biosensing technology with the expansion of nanotechnology.


2020 ◽  
Vol 6 (3) ◽  
pp. 155-158
Author(s):  
Katharina Wulf ◽  
Volkmar Senz ◽  
Thomas Eickner ◽  
Sabine Illner

AbstractIn recent years, nanofiber based materials have emerged as especially interesting for several biomedical applications, regarding their high surface to volume ratio. Due to the superficial nano- and microstructuring and the different wettability compared to nonstructured surfaces, the water absorption is an important parameter with respect to the degradation stability, thermomechanic properties and drug release properties, depending on the type of polymer [1]. In this investigation, the water absorption of different non- and plasma modified biostable nanofiber nonwovens based on polyurethane, polyester and polyamide were analysed and compared. Also, the water absorption by specified water wetting, the contact angle and morphology changes were examined. The results show that the water uptake is highly dependent on the surface modification and the polymer composition itself and can therefore be partially changed.


Nanophotonics ◽  
2020 ◽  
Vol 9 (15) ◽  
pp. 4497-4503
Author(s):  
Liying Zhang ◽  
Xiangqian Xiu ◽  
Yuewen Li ◽  
Yuxia Zhu ◽  
Xuemei Hua ◽  
...  

AbstractVertically aligned nanowire arrays, with high surface-to-volume ratio and efficient light-trapping absorption, have attracted much attention for photoelectric devices. In this paper, vertical β-Ga2O3 nanowire arrays with an average diameter/height of 110/450 nm have been fabricated by the inductively coupled plasma etching technique. Then a metal-semiconductor-metal structured solar-blind photodetector (PD) has been fabricated by depositing interdigital Ti/Au electrodes on the nanowire arrays. The fabricated β-Ga2O3 nanowire PD exhibits ∼10 times higher photocurrent and responsivity than the corresponding film PD. Moreover, it also possesses a high photocurrent to dark current ratio (Ilight/Idark) of ∼104 and a ultraviolet/visible rejection ratio (R260 nm/R400 nm) of 3.5 × 103 along with millisecond-level photoresponse times.


Sign in / Sign up

Export Citation Format

Share Document