Thin Film Multichip Packaging for High Temperature Digital Electronics

2011 ◽  
Vol 2011 (HITEN) ◽  
pp. 000039-000045 ◽  
Author(s):  
Kun Fang ◽  
Rui Zhang ◽  
Tami Isaacs-Smith ◽  
R. Wayne Johnson ◽  
Emad Andarawis ◽  
...  

Digital silicon carbide integrated circuits provide enhanced functionality for electronics in geothermal, aircraft and other high temperature applications. A multilayer thin film substrate technology has been developed to interconnect multiple SiC devices along with passive components. The conductor is vacuum deposited Ti/Ti:W/Au followed by an electroplated Au. A PECVD silicon nitride is used for the interlayer dielectric. Adhesion testing of the conductor and the dielectric was performed as deposited and after aging at 320°C. The electrical characteristics of the dielectric as a function of temperature were measured. Thermocompression flip chip bonding of Au stud bumped SiC die was used for electrical connection of the digital die to the thin film substrate metallization. Since polymer underfills are not compatible with 300°C operation, AlN was used as the base ceramic substrate to minimize the coefficient of thermal expansion mismatch between the SiC die and the substrate. Initial die shear results are presented.

1997 ◽  
Vol 476 ◽  
Author(s):  
P. H. Townsend ◽  
S. J. Martin ◽  
J. Godschalx ◽  
D. R. Romer ◽  
D. W. Smith ◽  
...  

AbstractA novel polymer has been developed for use as a thin film dielectric in the interconnect structure of high density integrated circuits. The coating is applied to the substrate as an oligomeric solution, SiLK*, using conventional spin coating equipment and produces highly uniform films after curing at 400 °C to 450 °C. The oligomeric solution, with a viscosity of ca. 30 cPs, is readily handled on standard thin film coating equipment. Polymerization does not require a catalyst. There is no water evolved during the polymerization. The resulting polymer network is an aromatic hydrocarbon with an isotropie structure and contains no fluorine.The properties of the cured films are designed to permit integration with current ILD processes. In particular, the rate of weight-loss during isothermal exposures at 450 °C is ca. 0.7 wt.%/hour. The dielectric constant of cured SiLK has been measured at 2.65. The refractive index in both the in-plane and out-of-plane directions is 1.63. The flow characteristics of SiLK lead to broad topographic planarization and permit the filling of gaps at least as narrow as 0.1 μm. The glass transition temperature for the fully cured film is greater than 490 °C. The coefficient of thermal expansivity is 66 ppm/°C below the glass transition temperature. The stress in fully cured films on Si wafers is ca. 60 MPa at room temperature. The fracture toughness measured on thin films is 0.62 MPa m ½. Thin coatings absorb less than 0.25 wt.% water when exposed to 80% relative humidity at room temperature.


2019 ◽  
Vol 1 (2) ◽  
pp. 636-642 ◽  
Author(s):  
Jun Hirotani ◽  
Shigeru Kishimoto ◽  
Yutaka Ohno

Carbon nanotube (CNT) thin-film transistors based on solution processing have great potential for use in future flexible and wearable device technologies.


MRS Bulletin ◽  
1992 ◽  
Vol 17 (8) ◽  
pp. 34-38 ◽  
Author(s):  
Ronald H. Ono

The realization of a revolutionary generation of electronics based on high-temperature superconductors (HTS) crucially depends on the ability to make high-quality thin film microstructures. These will incorporate materials such as YBa2Cu3O7-δ (YBCO), TlBaCaCuO, or BiSrCaCuO in a fashion similar to the circuits and devices made of their low Tc counterparts Nb or NbN. Without exception, the most valuable structures will be composed of multiple layers of superconducting films and dielectrics, in some cases combined with normal metals, low-temperature superconductors, or a variety of semiconductors. Generically, these can be combined in two ways: in a hybrid design where specialized packages and bonding are used to attach dissimilar materials, or in a monolithic thin film structure such as the one seen in Figure 1.The division between hybrid and monolithic multilayers results from the historical development of electronic circuits. Hybrid designs typically require linewidths and alignment accuracy somewhat less demanding than those used in fully integrated circuits. The advantage of hybrid construction is the separation of incompatible processing steps onto different substrates or die. The monolithic integrated circuit, whether microelectronic, millimeter wave, or radio frequency, can be made in large batches with concomitant economy of scale and can be fabricated with fewer parasitic constraints. Superconducting integrated circuits have followed the semiconductor pattern of being developed in a hybrid fashion, then transferred to a fully integrated process.


1989 ◽  
Vol 162 ◽  
Author(s):  
G. Sh. Gildenblat ◽  
S. A. Grot ◽  
C. W. Hatfield ◽  
C. R. Wronski ◽  
A. R. Badzian ◽  
...  

ABSTRACTWe describe the electrical characteristics of boron doped homoepitaxial diamond films fabricated using a plasma assisted CVD process, formation of ohmic contacts, high temperature (580°C) Schottky diodes, and a rudimentary diamond MESFET. We also report reversible changes of the conductive state of the diamond surface by various surface treatments for both natural and thin-film diamonds.


Author(s):  
Richard R. Grzybowski ◽  
Ben Gingrich

Advances in silicon-on-insulator (SOI) integrated circuit technology and the steady development of wider band gap semiconductors like silicon carbide are enabling the practical deployment of high temperature electronics. High temperature civilian and military electronics applications include distributed controls for aircraft, automotive electronics, electric vehicles and instrumentation for geothermal wells, oil well logging and nuclear reactors. While integrated circuits are key to the realization of complete high temperature electronic systems, passive components including resistors, capacitors, magnetics and crystals are also required. This paper will present characterization data obtained from a number of silicon high temperature integrated evaluated over a range of elevated temperatures and aged at a selected high temperature. This paper will also present a representative cross section of high temperature passive component characterization data for device types needed by many applications. Device types represented will include both small signal and power resistors and capacitors. Specific problems encountered with the employment of these devices in harsh environments will be discussed for each family of components. The goal in presenting this information is to demonstrate the viability of a significant number of commercially available silicon integrated circuits and passive components that operate at elevated temperatures as well as to encourage component suppliers to continue to optimize a selection of their product offerings for operation at higher temperatures. In addition, systems designers will be encouraged to view this information with an eye toward the conception and implementation of reliable and affordable high temperature systems.


2012 ◽  
Vol 2012 (HITEC) ◽  
pp. 000407-000412
Author(s):  
Kun Fang ◽  
Tami Isaacs-Smith ◽  
R. Wayne Johnson ◽  
Alexey Vert ◽  
Tan Zhang ◽  
...  

A thin film material and process technology is being developed and evaluated for high temperature (300°C) digital multichip modules for use in geothermal well instrumentation. The substrate technology selected is AlN to minimize the difference in the coefficient of thermal expansion between the substrate and the SiC digital die. A thin film/plated Ti/Ti:W/Au metallization is used with a plasma enhanced chemical vapor deposited Si3N4 to create multilayer interconnections. Active components are assembled to the interconnect substrate using Au stud bump thermocompression bonding. The Au stud bump maintains a monometallic interface between the substrate Au pad surface and the Au pads on the SiC die. A digital circuit has been built and successfully tested as an initial demonstration.


2019 ◽  
Vol 2019 (HiTen) ◽  
pp. 000099-000106
Author(s):  
Tom Morris

Abstract The use and growth of high temperature electronics in a variety of applications (such as oil and gas exploration and production, automotive under the hood, aerospace and satellite/space to name a few), has necessitated a closer look at the technology used in passive components (such as resistors). A variety of resistor technologies may be suitable for high temperature applications. In the paper information, on thin film technologies (both nichrome and tantalum nitride thin film information is presented), thick film, and wire-wound construction is presented, with discussions regarding their respective characteristics that make them more or less suitable for high temperature and other excessive environments. This paper presents information on resistor construction details, material information and manufacturing processing, along with test data and performance summaries under short and long term high temperature conditions. Additionally, other pertinent test data through typical environmental tests is presented Although resistors and other passive components are often taken for granted, high temperature applications can tax the performance of many resistor types. The proper selection of resistive components will insure that the stability, temperature coefficient (and temperature coefficient tracking for resistor networks), and reliability is maintained to insure reliable circuit performance.


Sign in / Sign up

Export Citation Format

Share Document