Precision Jetting of Glob Top Materials – a methodology for process optimization

2012 ◽  
Vol 2012 (1) ◽  
pp. 000351-000358 ◽  
Author(s):  
K.-F. Becker ◽  
M. Koch ◽  
J. Bauer ◽  
T. Braun ◽  
R. Aschenbrenner ◽  
...  

During the last years, jetting processes for higher viscosity materials have gained widespread interest in microelectronics manufacturing. Main reasons for this interest are high throughput/productivity of jetting, contactless material deposition, high volume precision and freely designable deposition patterns. In previous studies we have demonstrated the jetability of different resin-based materials, being exemplary for unfilled adhesive, for low viscous Underfill resin and for higher viscosity Glob Top materials. The focus of our previous work was on the dosing of Underfill material, where this study is dealing with more complex materials – Glob Top resins. These materials are non-Newtonian fluids - the flow curves of the filled materials can be described by models of Cross or Herschel/Bulkey. Furthermore, highly filled and paste-like mixtures show a significant time dependency of formation of structural equilibrium after deformation, so process development needs to take this into account, so detailed material analysis is described within this study. To illustrate the potential of jetting as a flexible and powerful tool for Chip on Board encapsulation, both, simple test-structures (dots, lines, dams) but also more complex demonstrators have been assembled using wire bonded ICs on ceramic substrates and encapsulants showing viscosities ranging from 10 Pas to > 100 Pas. Not only basic process data on droplet diameter, resulting material depot size and positioning accuracy have been evaluated, but also statistical means have been employed to determine process homogeneity and stability depending on the respective parameter set. Additionally, the whole process was followed by a high-speed camera system, providing detailed information on actual jetting behaviour during droplet release, flight and impact. Summarized this paper gives a detailed insight into jet process development for high viscosity Glob Top materials and describes process design rules and limitations and thus allows the optimized use of advanced jetting technology for Chip on Board assemblies.

2014 ◽  
Vol 2014 (1) ◽  
pp. 000438-000443 ◽  
Author(s):  
K.-F. Becker ◽  
M. Koch ◽  
S. Voges ◽  
T. Thomas ◽  
M. Fliess ◽  
...  

During the last years, jetting processes for higher viscosity materials have gained widespread interest in microelectronics manufacturing. Main reasons for this interest are high throughput/productivity of jetting, contactless material deposition, high volume precision and freely designable deposition patterns. In previous studies [i,ii] we have demonstrated the jetability of different resin-based materials, being exemplary for unfilled adhesive, for low viscous Underfill resin and for higher viscosity Glob Top materials. The focus of our previous work was on the dosing of various encapsulants - Underfill material with low viscosity and near Newtonian behaviour and Glob Top resins, being non-Newtonian fluids due to higher matrix viscosity and higher filler content (up to 70 wt %) with resulting increased filer/filler and filler/matrix interaction. During the last years jetting has become widely used and has been applied to the dosing of much more complex materials, combining high viscosity matrix materials with odd shaped and compressive particles. Examples for these materials are conductive adhesives and also solder pastes, where the jetting system developed by Swedish company Mydata set's the current standard for solder paste jetting. In a technological study solder paste jetting using different jetting systems has been investigated in comparison to solder paste dispensing and solder paste printing, especially material rheological behaviour and the correspondence to processability have been evaluated in detail. To illustrate the potential of solder paste jetting as a flexible and powerful tool for electronic system prototyping, a test vehicle has been designed, containing areas for SMD soldering and for process reproducibility. To determine process quality not only basic process data on droplet diameter, resulting material depot size and positioning accuracy have been evaluated, but also statistical means have been employed to determine process homogeneity and stability depending on the respective parameter set. Summarized this paper gives an insight into solder jet process development and describes material rheology demands and limitations and thus allows the optimized use of advanced solder jetting technology for electronics assemblies.


2013 ◽  
Vol 385-386 ◽  
pp. 292-295 ◽  
Author(s):  
Liu Jun

In order to verify the preliminary design of Aircraft Wing Leading Edge structures to bird impacting loads. The tests of bird impacting on Wing Leading Edge structure configurations were carried out using the relevant experimental facility. The impacting velocity was measured by laser velocity finder. The structure configuration was impacted by bird on three points and the whole process of dynamic deformation and damage on bird and Wing Leading Edge structure were recorded using high speed camera system. The test results showed that the leading edge slat was weak in anti-bird impacting and can not satisfy the airworthiness certification requirements. At the meantime the test results provid abundant experimental validation datas for the numerical simulation model applied in birds impacting.


2016 ◽  
Vol 11 (1) ◽  
pp. 30-37 ◽  
Author(s):  
A.A. Rakhimov ◽  
A.T. Akhmetov

The paper presents results of hydrodynamic and rheological studies of the inverse water hydrocarbon emulsions. The success of the application of invert emulsions in the petroleum industry due, along with the high viscosity of the emulsion, greatly exceeding the viscosity of the carrier phase, the dynamic blocking effect, which consists in the fact that the rate of flow of emulsions in capillary structures and cracks falls with time to 3-4 orders, despite the permanent pressure drop. The reported study shows an increase in viscosity with increasing concentration or dispersion of emulsion. The increase in dispersion of w/o emulsion leads to an acceleration of the onset of dynamic blocking. The use of microfluidic devices, is made by soft photolithography, along with high-speed photography (10,000 frames/s), allowed us to see in the blocking condition the deformation of the microdroplets of water in inverse emulsion prepared from simple chemical compounds.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2098
Author(s):  
Tomas Kalous ◽  
Pavel Holec ◽  
Jakub Erben ◽  
Martin Bilek ◽  
Ondrej Batka ◽  
...  

The electrospinning process that produces fine nanofibrous materials have a major disadvantage in the area of productivity. However, alternating current (AC) electrospinning might help to solve the problem via the modification of high voltage signal. The aforementioned productivity aspect can be observed via a camera system that focuses on the jet creation area and that measures the average lifespan. The paper describes the optimization of polyamide 6 (PA 6) solutions and demonstrates the change in the behavior of the process following the addition of a minor dose of oxoacid. This addition served to convert the previously unspinnable (using AC) solution to a high-quality electrospinning solution. The visual analysis of the AC electrospinning of polymeric solutions using a high-speed camera and a programmable power source was chosen as the method for the evaluation of the quality of the process. The solutions were exposed to high voltage applying two types of AC signal, i.e., the sine wave and the step change. All the recordings presented in the paper contained two sets of data: firstly, camera recordings that showed the visual expression of electrospinning and, secondly, signal recordings that provided information on the data position in the signal function.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4143
Author(s):  
Youzheng Cui ◽  
Shenrou Gao ◽  
Fengjuan Wang ◽  
Qingming Hu ◽  
Cheng Xu ◽  
...  

Compared with other materials, high-volume fraction aluminum-based silicon carbide composites (hereinafter referred to as SiCp/Al) have many advantages, including high strength, small change in the expansion coefficient due to temperature, high wear resistance, high corrosion resistance, high fatigue resistance, low density, good dimensional stability, and thermal conductivity. SiCp/Al composites have been widely used in aerospace, ordnance, transportation service, precision instruments, and in many other fields. In this study, the ABAQUS/explicit large-scale finite element analysis platform was used to simulate the milling process of SiCp/Al composites. By changing the parameters of the tool angle, milling depth, and milling speed, the influence of these parameters on the cutting force, cutting temperature, cutting stress, and cutting chips was studied. Optimization of the parameters was based on the above change rules to obtain the best processing combination of parameters. Then, the causes of surface machining defects, such as deep pits, shallow pits, and bulges, were simulated and discussed. Finally, the best cutting parameters obtained through simulation analysis was the tool rake angle γ0 = 5°, tool clearance angle α0 = 5°, corner radius r = 0.4 mm, milling depth ap = 50 mm, and milling speed vc= 300 m/min. The optimal combination of milling parameters provides a theoretical basis for subsequent cutting.


2015 ◽  
Vol 642 ◽  
pp. 212-216
Author(s):  
Yi Haung ◽  
Chin Chung Wei

Ball screw is a high-precision and high performance linear drive of mechanical elements. The frictional heat of internal components what is very significant impact for platform transmission in high speed and the high axial load and causes the thermal expansion of element. In this research , the influence of different greases on ball screw is investigated in thermal rising of nut and driving torque in high speed and high axial load. A vertical motion platform was used for driving performance test. Thermal rising of nut of ball screw and the variance of transmission torque whose lubricated by high viscosity base oil grease is significant larger than the lower one. High viscosity grease is not easy to carry out the friction heat generated at ball and raceway contact area due to the bad flowing properties. It also has more serious wear occurred at contact area and high friction force, whose causes the large variance of transmission torque.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Elena Goi ◽  
Xi Chen ◽  
Qiming Zhang ◽  
Benjamin P. Cumming ◽  
Steffen Schoenhardt ◽  
...  

AbstractOptical machine learning has emerged as an important research area that, by leveraging the advantages inherent to optical signals, such as parallelism and high speed, paves the way for a future where optical hardware can process data at the speed of light. In this work, we present such optical devices for data processing in the form of single-layer nanoscale holographic perceptrons trained to perform optical inference tasks. We experimentally show the functionality of these passive optical devices in the example of decryptors trained to perform optical inference of single or whole classes of keys through symmetric and asymmetric decryption. The decryptors, designed for operation in the near-infrared region, are nanoprinted on complementary metal-oxide–semiconductor chips by galvo-dithered two-photon nanolithography with axial nanostepping of 10 nm1,2, achieving a neuron density of >500 million neurons per square centimetre. This power-efficient commixture of machine learning and on-chip integration may have a transformative impact on optical decryption3, sensing4, medical diagnostics5 and computing6,7.


Micromachines ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 554
Author(s):  
Yang Yang ◽  
Shoudong Gu ◽  
Jianfang Liu ◽  
Hongyu Tian ◽  
Qingqing Lv

Micro-droplet jetting manufacture is a new 3D printing technology developed in recent years. Presently, this new technology mainly aims at ejecting a low-viscosity medium. Therefore, a device for ejecting high-viscosity molten liquid is designed by analyzing the injection principle of high-viscosity molten liquid. Initially, the cooling mechanism is designed to overcome the defect that the piezoelectric stacks cannot operate in high-temperature conditions. Thereafter, the mathematical model of the liquid velocity in the nozzle is derived, and the factors influencing injection are verified by Fluent. Subsequently, a prototype of the jet printer is fabricated, and the needle velocity is tested by the laser micrometer; the relationship between voltage difference and the needle velocity is also obtained. The experimental results matched the theoretical model well, showing that the voltage difference, needle radius, nozzle diameter, and taper angle are closely related to the injection performance of the 3D jet printer. By using a needle with a radius of 0.4 mm, a nozzle with a diameter of 50 μm, a taper angle of 90°, a supply pressure of 0.05 Mpa, and a voltage difference of 98 V, a molten liquid with a viscosity of 8000 cps can be ejected with a minimum average diameter of 275 μm, and the variation of the droplet diameter is within ±3.8%.


Sign in / Sign up

Export Citation Format

Share Document