scholarly journals COVID-19. A review

2020 ◽  
Vol 90 (2) ◽  
Author(s):  
Irappa Madabhavi ◽  
Malay Sarkar ◽  
Nagaveni Kadakol

The enduring epidemic outbreak which started in Wuhan city of China, in December 2019 caused by the 2019 novel coronavirus (COVID- 19) or the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has created a dangerous and deadly Public Health disaster of International apprehension, with cases confirmed in several countries. This novel community health trouble is frightening the universe with clinical, psychological, emotional, collapse of health system and economical slowdown in each and every part of the world infecting nearly 200 countries. A highly virulent and pathogenic COVID-19 viral infection with incubation period ranging from two to fourteen days, transmitted by breathing of infected droplets or contact with infected droplets, belongs to the genus Coronavirus with its high mutation rate in the Coronaviridae. The likely probable primary reservoir could be bats, because genomic analysis discovered that SARSCoV-2 is phylogenetically interrelated to SARS-like bat viruses. The transitional resource of origin and transfer to humans is not known, however, the rapidly developing pandemic has confirmed human to human transfer. Approximately 1,016,128 reported cases, 211,615 recovered cases and 53,069 deaths of COVID-2019 have been reported to date (April 2, 2020). The symptoms vary from asymptomatic, low grade pyrexia, dry cough, sore throat, breathlessness, tiredness, body aches, fatigue, myalgia, nausea, vomiting, diarrhea, to severe consolidation and pneumonia, acute respiratory distress syndrome (ARDS) and multiple organ dysfunction leading to death with case fatality rate ranging from 2 to 3%.

2020 ◽  
Vol 48 (9) ◽  
pp. 030006052095506
Author(s):  
Dezhi Yao ◽  
Huanrong Ye ◽  
Zhirong Huo ◽  
Lei Wu ◽  
Shixiong Wei

At the end of 2019, novel coronavirus (COVID-19) infection was detected in Wuhan City, Hubei Province, China. The COVID-19 infection characteristics include a long incubation period, strong infectivity, and high fatality rate, and it negatively affects human health and social development. COVID-19 has become a common problem in the global medical and health system. It is essentially an acute self-limiting disease. Patients with severe COVID-19 infection usually progress to acute respiratory distress syndrome, sepsis, metabolic acidosis that is difficult to correct, coagulation dysfunction, multiple organ failure, and even death within a short period after onset. There remains a lack of effective drugs for such patients clinically. Mesenchymal stem cells (MSCs) are expected to reduce the risk of complications and death in patients because they have strong anti-inflammatory and immunomodulatory capabilities, which can improve the microenvironment, promote neovascularization, and enhance tissue repair capabilities. China is currently conducting several clinical trials on MSCs for the treatment of COVID-19. Here, we review the research progress related to using stem cells to treat patients with COVID-19.


2020 ◽  
Vol 7 (1) ◽  
pp. 062-071
Author(s):  
Beatriz Gasser ◽  
Ricardo Andres Ramirez Uscategui

Since discovery of the novel coronavirus (SARS-CoV-2) in December of 2019, this viral pneumonia originated in Wuhan, China quickly spread around the world. This new disease, called COVID-19 can cause Acute Respiratory Distress Syndrome (ARDS) due to an uncontrolled inflammatory response like sepsis, that leads to multiple organ failure and even death. Several pharmacotherapeutics alternatives are being tested over the world, looking for most diverse drugs that might be able to fight the infection. The objective of this paper is to review the main pharmacotherapeutics techniques development, as remdesivir, chloroquine/hydroxychloroquine, lopinavir plus ritonavir, interferon-β, ivermectin, anticoagulants, convalescent plasma and vaccine, currently undergoing clinical trials in order to evaluate its effectiveness and safety to combat the COVID-19, presenting their characteristics, possible adverse effects and main scientific findings of its potential action. In conclusion, some therapies presented promising in-vitro results or in the treatment of some patients, nonetheless, multicentric blinded placebo controlled clinical trials are necessary to determine their effectiveness, safety, dosage, and best time point of treatment.


Author(s):  
Mustafa Kurtuluş ◽  
İbrahim Pirim

Although the etiopathogenesis of infections has been largely illuminated by technical and scientific developments in the past century; many issues are still not clear today. The word “there is no disease, there is a patient” is stil valid today. Because the immune response of the host is as important as the virulence of the pathogen in infections and disease course can vary a lot according to the person. Cytokine Storm is seen exactly in a group of diseases where the host response is very prominent. For this reason, Cytokine Storm Syndrome (CSS) is mostly mentioned. CSS emerging due to different inflammatory etiologies; it is an overwhelming systemic inflammation, hemodynamic imbalance, multiple organ failure, and potentially leading to death. After being first seen in Influenza in 2003 as a viral agent, CSS was seen in SARS-Cov, MERS-CoV and SARS-CoV2, which were found to be the las thuman disease from the Corona viridea family.The novel coronavirus SARS-CoV2 causes COVID-19, a pandemic threatening millions. Uncontrolled production of pro-inflammatory mediators contributes to, acut respiratory distress syndrome (ARDS) and cytokine storm syndrome in COVID-19.


2021 ◽  
Vol 12 ◽  
Author(s):  
Miquéias Lopes-Pacheco ◽  
Pedro Leme Silva ◽  
Fernanda Ferreira Cruz ◽  
Denise Battaglini ◽  
Chiara Robba ◽  
...  

Severe acute respiratory disease coronavirus 2 (SARS-CoV-2, formerly 2019-nCoV) is a novel coronavirus that has rapidly disseminated worldwide, causing the coronavirus disease 2019 (COVID-19) pandemic. As of January 6th, 2021, there were over 86 million global confirmed cases, and the disease has claimed over 1.87 million lives (a ∼2.2% case fatality rate). SARS-CoV-2 is able to infect human cells by binding its spike (S) protein to angiotensin-conversing enzyme 2 (ACE2), which is expressed abundantly in several cell types and tissues. ACE2 has extensive biological activities as a component of the renin-angiotensin-aldosterone system (RAAS) and plays a pivotal role as counter-regulator of angiotensin II (Ang II) activity by converting the latter to Ang (1-7). Virion binding to ACE2 for host cell entry leads to internalization of both via endocytosis, as well as activation of ADAM17/TACE, resulting in downregulation of ACE2 and loss of its protective actions in the lungs and other organs. Although COVID-19 was initially described as a purely respiratory disease, it is now known that infected individuals can rapidly progress to a multiple organ dysfunction syndrome. In fact, all human structures that express ACE2 are susceptible to SARS-CoV-2 infection and/or to the downstream effects of reduced ACE2 levels, namely systemic inflammation and injury. In this review, we aim to summarize the major features of SARS-CoV-2 biology and the current understanding of COVID-19 pathogenesis, as well as its clinical repercussions in the lung, heart, kidney, bowel, liver, and brain. We also highlight potential therapeutic targets and current global efforts to identify safe and effective therapies against this life-threatening condition.


2020 ◽  
Vol 51 (5) ◽  
pp. 337-342 ◽  
Author(s):  
Antoney J. Ferrey ◽  
Grace Choi ◽  
Ramy M. Hanna ◽  
Yongen Chang ◽  
Ekamol Tantisattamo ◽  
...  

Novel coronavirus disease 2019 (COVID-19) is a highly infectious, rapidly spreading viral disease with an alarming case fatality rate up to 5%. The risk factors for severe presentations are concentrated in patients with chronic kidney disease, particularly patients with end-stage renal disease (ESRD) who are dialysis dependent. We report the first US case of a 56-year-old nondiabetic male with ESRD secondary to IgA nephropathy undergoing thrice-weekly maintenance hemodialysis for 3 years, who developed COVID-19 infection. He has hypertension controlled with angiotensin receptor blocker losartan 100 mg/day and coronary artery disease status-post stent placement. During the first 5 days of his febrile disease, he presented to an urgent care, 3 emergency rooms, 1 cardiology clinic, and 2 dialysis centers in California and Utah. During this interval, he reported nausea, vomiting, diarrhea, and low-grade fevers but was not suspected of COVID-19 infection until he developed respiratory symptoms and was admitted to the hospital. Imaging studies upon admission were consistent with bilateral interstitial pneumonia. He was placed in droplet-eye precautions while awaiting COVID-19 test results. Within the first 24 h, he deteriorated quickly and developed acute respiratory distress syndrome (ARDS), requiring intubation and increasing respiratory support. Losartan was withheld due to hypotension and septic shock. COVID-19 was reported positive on hospital day 3. He remained in critical condition being treated with hydroxychloroquine and tocilizumab in addition to the standard medical management for septic shock and ARDS. Our case is unique in its atypical initial presentation and highlights the importance of early testing.


2021 ◽  
Vol 15 (1) ◽  
pp. 286-295
Author(s):  
Akhilesh Agrawal ◽  
Supriya Kashikar ◽  
kaivalya Deo ◽  
Abhay Gaidhane ◽  
Anand Bansod ◽  
...  

Severe Acute Respiratory Coronavirus-2 [SARS-CoV-2] emerged as a great threat to the world at the end of December 2019 in China. The SARS-CoV-2 evolved from a virus responsible for the SARS epidemic in 2002. The SARS-CoV-2 has a high rate of human-human transmission and originated from the bat. It has a close resemblance with bat-like-SARS-CoV compared to SARS-CoV; however, the Spike protein responsible for virus-host cell interaction possesses the least similarity with that of SARS-CoV. Cytokine Storm is associated with the severity of Covid-19 and leads to acute respiratory distress syndrome [ARDS] and/or multiple organ dysfunction syndromes [MODS]. In the current review article, the features of a novel coronavirus, including viral biology, genomic organisation, life cycle, pathophysiology and genetic diversity, have been discussed. The development of policies and plans which can prepare the world for future pandemics has also been proposed. In addition, the drug development pipelines, diagnostic facilities and management of such pandemics need an up-gradation to contain the current as well as future outbreaks.


2020 ◽  
Vol 54 (2) ◽  
pp. 72-73
Author(s):  
Ernest Kenu ◽  
Joseph Frimpong ◽  
Kwadwo Koram

On 12 January 2020, the World Health Organization (WHO) confirmed that a novel coronavirus was the cause of a respiratory illness in a cluster of people in Wuhan City, Hubei Province, China. The disease was christened COVID-19 and the pathogen (an RNA virus) identified as SARS-Coronavirus-2 (SARS-CoV-2).1,2 The virus is primarily spread through contact with small droplets produced from coughing, sneezing, or talking by an infected person. While a substantial proportion of infected individuals may remain asymptomatic, the most common symptoms in clinical cases include, fever, cough, acute respiratory distress, fatigue, and failure to resolve over 3 to 5 days of antibiotic treatment. Complications may include pneumonia and acute respiratory distress syndrome.3 Over five million confirmed cases of COVID-19 has been recorded globally with more than 300,000 deaths as at 25th May 2020. The United States of America has recorded the highest number of cases with more than 1.5 million and over 100,000 deaths.4 In Africa, more than 90,0000 cases have been reported with about 3,000 deaths. South Africa has recorded the highest number of cases with 23,615 cases and 481 deaths. Ghana confirmed its first cases of COVID-19 on 12th March 2020 and had as at 25 May 2020 recorded over 7,000 cases with 34 deaths.5  


2021 ◽  
Vol 69 (6) ◽  
pp. 71-80
Author(s):  
Kristina A. Oganyan ◽  
Kira V. Shalepo ◽  
Alevtina M. Savicheva ◽  
Olesya N. Bespalova ◽  
Igor Yu. Kogan

The novel coronavirus infection (COVID-19), first reported in Wuhan, China in December 2019, is dangerous for pregnant women, and the probability of infection is the same as in the general population. COVID-19 may be transmitted from person to person through two different routes: airborne and direct contact. Diagnosis of COVID-19 requires the detection of SARS-CoV-2 RNA by reverse transcription polymerase chain reaction. The main biomaterial for laboratory research is discharge from the nasopharynx and (or) oropharynx. The incubation period for COVID-19 is thought to last from 2 to 14 days, with a median time of 45 days. The causative agent of COVID-19 can be detected in the upper respiratory tract 12 days before and within 714 days after the onset of symptoms. The disease can occur with mild-to-moderate severity, and manifests itself as a respiratory infection (runny nose, sore throat, low-grade fever, with no viral pneumonia and hypoxia). Severe COVID-19 may develop pneumonia, respiratory distress syndrome, sepsis, septic shock, cardiomyopathy, arrhythmia, renal failure, and other complications up to multiple organ failure. Pregnant women with COVID-19 may have complications of pregnancy, such as miscarriage, premature discharge of amniotic fluid, and premature birth. There are no reports of vertical transmission, but some newborns develop intrauterine growth retardation and life-threatening gastrointestinal complications. Thus, pregnant women with a confirmed diagnosis or suspicion of COVID-19 are at high risk for developing pregnancy complications and adverse perinatal outcomes. Currently, information is being collected on COVID-19 cases in pregnant women, the course of infection, and perinatal outcomes.


Author(s):  
Jing Xiong ◽  
Lei Bao ◽  
Hongbo Qi ◽  
Zhichun Feng ◽  
Yuan Shi

: A novel coronavirus, named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has emerged in Wuhan, China since the end of December 2019 and has quickly spread all over the world in a matter of two months. To date, no specific treatment has been proven to be effective for coronavirus disease 2019 (COVID-19). With the rapid increase of infected patients and deaths, it is urgent to explore an effective treatment for COVID-19. Current studies suggest that there exists cytokine storm in SARS-CoV-2-infected patient, some of the patients will develop to acute respiratory distress syndrome (ARDS) and multiple organ dysfunction, even death. Mesenchymal stem cells (MSCs) possess the property of immunomodulation. Given the previous preclinical and clinical studies, MSCs therapy has been shown safety and efficacy in the treatment of respiratory failure or ARDS. Based on similar principles, MSCs therapy may also be an effective therapy in the treatment of COVID-19. In this study, we summarized the clinical outcomes of MSCs for ARDS patients in some preclinical and clinical studies, and discussed the application of MSCs for patients with COVID-19 in China and the related important issues with MSCs use during the outbreak.


2021 ◽  
Vol 32 (2) ◽  
pp. 551-555
Author(s):  
Ayşegül Bilge ◽  
İsmail Karasoy ◽  
Elif Neziroğlu ◽  
Yeşim Güner

Although novel coronavirus-2019 (COVID-19) primarily affects the respiratory system, it can affect multiple organ systems, leading to serious complications, such as acute respiratory distress syndrome (ARDS) and multiple organ failure. Nearly 20 to 55% of patients with COVID-19 experience coagulation disorders that cause high mortality in line with the severity of the clinical picture. Thromboembolism can be observed in both venous and arterial systems. The vast majority of thromboembolic events are associated with the venous system and are often observed as pulmonary embolism. Arterial thromboembolisms often involve the arteries in the lower extremities, followed by those in the upper extremities. Herein, we report a rare case of COVID-19 pneumonia whose left arm was amputated at the forearm level after arterial thromboembolism in the left upper extremity. This case report is valuable, as it is the first reported case of upper extremity arterial thromboembolism in Turkey, as well as the only case in the literature in which the patient underwent four surgical interventions and is still alive.


Sign in / Sign up

Export Citation Format

Share Document