scholarly journals Teucrium polium L. improves blood glucose and lipids and ameliorates oxidative stress in heart and aorta of diabetic rats

2018 ◽  
Vol 9 (1) ◽  
pp. 110 ◽  
Author(s):  
Saeed Niazmand ◽  
NargesAmel Zabihi ◽  
SeyedMojtaba Mousavi ◽  
Maryam Mahmoudabady ◽  
Mohammad Soukhtanloo ◽  
...  
2020 ◽  
Vol 20 (7) ◽  
pp. 1117-1132
Author(s):  
Abdelaziz M. Hussein ◽  
Elsayed A. Eid ◽  
Ismaeel Bin-Jaliah ◽  
Medhat Taha ◽  
Lashin S. Lashin

Background and Aims: In the current work, we studied the effects of exercise and stevia rebaudiana (R) extracts on diabetic cardiomyopathy (DCM) in type 2 diabetic rats and their possible underlying mechanisms. Methods: : Thirty-two male Sprague Dawley rats were randomly allocated into 4 equal groups; a) normal control group, b) DM group, type 2 diabetic rats received 2 ml oral saline daily for 4 weeks, c) DM+ Exercise, type 2 diabetic rats were treated with exercise for 4 weeks and d) DM+ stevia R extracts: type 2 diabetic rats received methanolic stevia R extracts. By the end of the experiment, serum blood glucose, HOMA-IR, insulin and cardiac enzymes (LDH, CK-MB), cardiac histopathology, oxidative stress markers (MDA, GSH and CAT), myocardial fibrosis by Masson trichrome, the expression of p53, caspase-3, α-SMA and tyrosine hydroxylase (TH) by immunostaining in myocardial tissues were measured. Results: T2DM caused a significant increase in blood glucose, HOMA-IR index, serum CK-MB and LDH, myocardial damage and fibrosis, myocardial MDA, myocardial α-SMA, p53, caspase-3, Nrf2 and TH density with a significant decrease in serum insulin and myocardial GSH and CAT (p< 0.05). On the other hand, treatment with either exercise or stevia R extracts significantly improved all studied parameters (p< 0.05). Moreover, the effects of stevia R was more significant than exercise (p< 0.05). Conclusion: Both exercise and methanolic stevia R extracts showed cardioprotective effects against DCM and Stevia R offered more cardioprotective than exercise. This cardioprotective effect of these lines of treatment might be due to attenuation of oxidative stress, apoptosis, sympathetic nerve density and fibrosis and upregulation of the antioxidant transcription factor, Nrf2.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Olubanke O. Ogunlana ◽  
Babatunde O. Adetuyi ◽  
Miracle Rotimi ◽  
lohor Esalomi ◽  
Alaba Adeyemi ◽  
...  

Abstract Background Diabetes, a global cause of mortality in developing countries is a chronic disorder affecting the metabolism of macromolecules and has been attributed to the defective production and action of insulin characterized by persistent hyperglycemic properties. This global disorder harms organs of the body such as the liver, kidney and spleen. Medicinal plants such as Hunteria umbellate have been shown to possess hypoglycemic, antioxidative and anti-diabetic properties owing to the high concentration of active phytochemical constituents like flavonoids and alkaloids. The present study seeks to evaluate the hypoglycemic activities of ethanolic seed extract of Hunteria umbellate on streptozotocin-induced diabetes rats. Methods Thirty (30) female experimental rats were randomly divided into five groups with six rats per group and were administered streptozotocin (STZ) and Hunteria umbellate as follows. Group 1 served as control and was given only distilled water, group 2 rats were administered 60 mg/kg STZ; Group 3 was administered 60 mg/kg STZ and 100 mg/kg metformin; group 4 rats were administered 60 mg/kg STZ and 800 mg/kg Hunteria umbellate, group 5 rats 60 mg/kg STZ and 400 mg/kg Hunteria umbellate. The fasting blood glucose level of each rat was measured before sacrifice. Rats were then sacrificed 24 h after the last dose of treatment. Results The results showed that Hunteria umbellate significantly reversed STZ-induced increase in fasting blood glucose and increase in body and organs weight of rats. Hunteria umbellate significantly reversed STZ-induced decrease in antioxidant enzyme in liver, kidney and spleen of rats. Hunteria umbellate significantly reversed STZ-induced increase in oxidative stress markers in liver, kidney and spleen of rats. Conclusion Collectively, our results provide convincing information that inhibition of oxidative stress and regulation of blood glucose level are major mechanisms through which Hunteria umbellate protects against streptozotocin-induced diabketes rats.


2015 ◽  
Vol 93 (4) ◽  
pp. 385-395 ◽  
Author(s):  
Chandrabose Sureka ◽  
Thiyagarajan Ramesh ◽  
Vavamohaideen Hazeena Begum

The aim of the present study was to investigate the protective effects of Sesbania grandiflora flower (SGF) extract on erythrocyte membrane in Streptozotocin (STZ)-induced diabetic rats. Adult male albino rats of Wistar strain, weighing 190–220 g, were made diabetic by an intraperitonial administration of STZ (45 mg/kg). Normal and diabetic rats were treated with SGF, and diabetic rats were also treated with glibenclamide as drug control, for 45 days. In this study plasma insulin and haemoglobin levels were decreased and blood glucose, glycosylated haemoglobin, protein oxidation, lipid peroxidation markers, and osmotic fragility levels were increased in diabetic rats. Moreover, erythrocytes antioxidant enzymes such as superoxide dismutase, catalase, glutathione peroxide, glutathione reductase, glutathione-S-transferase, and glucose-6-phosphate dehydrogenase activities and non-enzymatic antioxidants such as vitamin C, vitamin E, reduced glutathione (GSH), and oxidized glutathione (GSSG) levels were altered. Similarly, the activities of total ATPases, Na+/K+-ATPase, Ca2+-ATPase, and Mg2+-ATPase were also decreased in the erythrocytes of diabetic rats. Administration of SGF to STZ-induced diabetic rats reduced blood glucose and glycosylated haemoglobin levels with increased levels of insulin and haemoglobin. Moreover, SGF reversed the protein and lipid peroxidation markers, osmotic fragility, membrane-bound ATPases activities, and antioxidant status in STZ-induced diabetic rats. These results suggest that SGF could provide a protective effect on diabetes by decreasing oxidative stress-associated diabetic complications.


2018 ◽  
Vol 1 (3) ◽  
Author(s):  
Shiqiang Wang

Objective To investigate the effects of exercise on the myocardial oxidative stress injury of diabetic rats, and discussed the role of Keap1/Nrf2 signaling pathway in this process Methods  Tyep 2 diabetic rat model was established by streptozotocin injection through abdominal cavity and high fat diet. The all the diabetic rats were divided into three groups: control group (NC), diabetes group(T2DM) and diabetes exercise group, NC and T2DM group were kept quiet for 8 weeks, T2DME group was trained for 8 weeks. After the exercise, weight, heart weight and blood were measured. MDA, T-SOD and GSH-PX enzyme were measured by biochemical method. Ho-1, Keap1, Nrf2 gene and protein expression were detected by RT-PCR and WesternBlotting. Results Compared with NC group, the weight of rats in the T2DM group significantly decreased [(528+/-71g vs 362+/-33g), P<0.05], HWI  significantly increased [(2.845+/-0.22 vs 3.841+/-0.21, P <0.05], blood glucose was significantly increased [(6.4±3.8 vs 26±7.5mmol/L), P <0.01],T-SOD and GSH-PX activity decreased significantly (P<0.05), Ho-1 protein expression increased (P<0.01), Keap1 and Nrf2 showed no significant changes, and Nrf2 nuclear transposition decreased (P<0.05). Compared with the T2DM group, no significant change in body weight and heart weight in the T2DME group, with significant decrease in HWI[(3.841±0.21 vs 3.235±0.23),P<0.05], with significant decrease in blood glucose [(26.0±7.5 vs 21.0±6.8),P<0.05]. Ho-1 gene and protein expression increased significantly(P<0.05and P<0.01), with no significant change of Keap1, while Nrf2 expression increased significantly (P < 0.05), and Nrf2 nuclear transposition increased significantly (P < 0.01). Conclusions Exercise activates the myocardial Keap1/Nrf2 signaling pathway in rats, promotes the expression of downstream antioxidant enzymes, increases cardiac antioxidant capacity, and resists diabetic myocardial oxidative stress injury.


2015 ◽  
Vol 62 (2) ◽  
pp. 13-19
Author(s):  
Urmila Jarouliya ◽  
Anish Zacharia ◽  
Raj K. Keservani ◽  
Godavarthi B.K.S Prasad

Abstract Diabetes mellitus is a metabolic disorder characterised by hyperglycemia and oxidative stress. The aim of the present study is to explore the antioxidant effect of Spirulina maxima in rat model along with the histopathological observations. Diabetes was induced by feeding 10% fructose solution orally to Wistar rats (n = 6) for 30 days, analysed for plasma blood glucose and the markers of the oxidative stress [catalase (CAT), superoxide dismutase (SOD), reduced glutathione (GSH) and thiobarbituric acid reactive substances (TBARS)]. These biochemical studies were associated with histopathological examination of liver and kidney sections. The microalga Spirulina maxima being rich in proteins and other essential nutrients is widely used as a food supplement. S. maxima at a dose of 5 and 10% per kg and the metformin (500 mg/kg) as reference drug were given orally for 30 days to the diabetic rats. Diabetic rats showed significant (p < 0.001) elevations in plasma blood glucose, thiobarbituric acid-reactive substances and significant reduction in catalase, superoxide dismutase and reduced glutathione activity. Oral administration of 5 and 10% aqueous extract of S. maxima for 30 days restored not only of blood glucose levels but also markers of oxidative stress. Histopathological observations of tissues manifested that the S. maxima administration had the protective and therapeutic effects against fructose-induced abnormalities in diabetic rats. It is concluded that S. maxima is effective in reinstating the antioxidant activity in addition to its antidiabetic effect in type 2 diabetic rats.


2018 ◽  
Vol 238 (1) ◽  
pp. 47-60 ◽  
Author(s):  
Sheng-Gao Tang ◽  
Xiao-Yu Liu ◽  
Ji-Ming Ye ◽  
Ting-Ting Hu ◽  
Ying-Ying Yang ◽  
...  

Diabetes-induced injury of myocardium, defined as diabetic cardiomyopathy (DCM), accounts for significant mortality and morbidity in diabetic population. Alleviation of DCM by a potent drug remains considerable interests in experimental and clinical researches because hypoglycemic drugs cannot effectively control this condition. Here, we explored the beneficial effects of isosteviol sodium (STVNa) on type 1 diabetes-induced DCM and the potential mechanisms involved. Male Wistar rats were induced to diabetes by injection of streptozotocin (STZ). One week later, diabetic rats were randomly grouped to receive STVNa (STZ/STVNa) or its vehicle (STZ). After 11 weeks of treatment or 11 weeks treatment following 4 weeks of removal of the treatment, the cardiac function and structure were evaluated and related mechanisms were investigated. In diabetic rats, oxidative stress, inflammation, blood glucose and plasma advanced glycation end products (AGEs) were significantly increased, whereas superoxide dismutase 2 (SOD-2) expression and activity were decreased. STVNa treatment inhibited cardiac hypertrophy, fibrosis and inflammation, showed similar ratio of heart to body weight and antioxidant capacities almost similar to the normal controls, which can be sustained at least 4 weeks. Moreover, STVNa inhibited diabetes-inducted stimulation of both extracellular signal-regulated kinase (ERK) and nuclear factor κB (NF-κB) signal pathways. However, blood glucose, plasma AGE and insulin levels were not altered by STVNa treatment. These results indicate that STVNa may be developed into a potent therapy for DCM. The mechanism underlying this therapeutic effect involves the suppression of oxidative stress and inflammation by inhibiting ERK and NF-κB without changing blood glucose or AGEs.


2020 ◽  
Vol 44 (3) ◽  
pp. 213-228
Author(s):  
Babak Ebrahimi ◽  
Fatemeh Forouzanfar ◽  
Hoda Azizi ◽  
Hoda Khoshdel-Sarkarizi ◽  
Hamidreza Sadeghnia ◽  
...  

Diabetes mellitus is a metabolic disorder with increasing global prevalence. It is characterized by impaired glucose utilization that leads to chronic hyperglycemia which is a result of the body's inability to produce insulin (diabetes type I) or inability to make use of insulin (diabetes type II). Long-term hyperglycemia can cause damage to multiple systems, and microvascular and macrovascular complications lead to myocardial infarction, blindness, stroke and renal failure. Diabetes affected 382 million people globally in 2013, and it is estimated to rise up to 592 million by 2035. In spite of its management, both microvascular and macrovascular complications partly linked to oxidative stress are not efficiently prevented. Glibenclamide was approved on the U. S. market for treatment of diabetes type II in 1984. ATP-sensitive potassium channels (KATP) are widely distributed and present in a number of tissues including muscle, pancreatic beta cells and the brain. Glibenclamide closed KATP channels, which leads to depolarization of the cells and insulin secretion. Acupuncture is also a very significant therapeutic method in the complementary medicine. ST36 (Zusanli), CV4 (Guanyuan) and CV12 (Zhongwan) are several acupoints that have been used for treatment of diabetes. In this study for evaluating the effects of glibenclamide and electroacupuncture, 3 parameters such as malondialdehyde, ferric reducing antioxidant power and thiol will be measured. Malondialdehyde (MDA) is the organic compound and it is a marker for oxidative stress. Antioxidants are compounds that inhibit oxidation. Oxidation is a chemical reaction that can produce free radicals, thereby leading to chain reactions that may damage the cells of organisms. Antioxidants such as FRAP and thiol are useful parameters of assessment of oxidative stress. The aim of this study was to evaluate the effects of Electroacupuncture (EA) plus glibenclamide (G) as a novel therapy on diabetic rats and maybe for human. Fifty-four male Wistar rats were randomly divided to 9 groups: 1 non-diabetic control group and 8 diabetic groups (1 sham control group and 7 experimental groups; D/G 2.5 mg/kg, D/G 5 mg/kg, D/G 10 mg/kg, EA, D/EA/G 2.5 mg/kg, D/EA/G 5 mg/kg, and D/EA/G 10 mg/kg). Diabetes was induced by intraperitoneal injection of streptozotocin with high-fat diet. At the end of course, blood samples were obtained. Combination therapy of EA and glibenclamide 5 mg/kg decreased blood glucose better than single therapies (p<0.05) and showed 41 percent decrease in blood glucose as compared to D/G 5 mg/kg group. Combination of EA and glibenclamide 10 mg/kg showed the best effect for decreasing the malondialdehyde level (p<0.05) and also showed 43 percent decrease in comparison to D/G 10 mg/kg group. Combination of glibenclamide 2.5 mg/kg and EA increased the FRAP level better than other treatment groups (P<0.001) andachieved the ferric reducing antioxidant power level near to normal range. Combination of glibenclamide 10 mg/kg with EA increased the thiol concentration better than other treatment groups (P<0.001) and showed 4 percent increase in thiol concentration as compared to D/G 10 mg/kg group. These findings suggest that EA potentiates the effect of glibenclamide to protect animal model and maybe human against oxidative stress and damage.


Sign in / Sign up

Export Citation Format

Share Document