Wheat Spike Temperature in Relation to Base Temperature for Grain Filling Duration

1991 ◽  
Vol 71 (1) ◽  
pp. 63-69 ◽  
Author(s):  
S. Pararajasingham ◽  
L. A. Hunt

Estimates of the base temperature for grain filling duration of wheat (Triticum aestivum L.) differ between outdoor and indoor studies. This study was set up to determine whether this difference could be attributed to variation in spike-air temperature differentials. Spike and/or spikelet temperatures were determined in wheat grown outdoors as well as indoors. Spike temperature, measured with an infrared thermometer, of wheat grown outdoors with adequate water supply was 1.5 °C greater than air temperature while spikelet temperature measured with a thermocouple closely approximated air temperature. In indoor grown wheat, on the other hand, regardless of the magnitude of air temperature, spikelet temperature was found to be 3–4 °C above that of air when lights were on. Estimating the base temperature for grain filling duration with data from a previous indoor study, with compensation for the 3–4 °C increase in spikelet temperature, resulted in 8.8 °C base temperature for grain filling duration, comparable to that obtained in outdoor studies. Differences between outdoor and indoor studies may thus reflect spike-air temperature differentials. Estimation of the base temperature for grain filling with air temperature appears appropriate for outdoor studies. Key words: Triticum aestivum (L.), base temperature, grain filling duration, wheat

1991 ◽  
Vol 71 (3) ◽  
pp. 609-617 ◽  
Author(s):  
L. A. Hunt ◽  
G. van der Poorten ◽  
S. Pararajasingham

To help define traits that are likely to improve wheat (Triticum aestivum L.) grain yield in a warm, humid continental climate, genotypic variations in various grain growth characteristics in wheat were examined. Winter habit cultivars were grown indoors under a 16-h photoperiod and at day/night temperatures of 20/15 °C, and spring habit cultivars at temperatures ranging from 15/15 °C to 30/25 °C. Grain-filling duration of the winter wheats varied from 36.4 d for Peking-10 to 31.8 d for Priboy. Final kernel weights, which varied from 61.7 mg for Lovrin-10 to 38.3 for Jokionen-3057, were highly correlated with rates of dry matter accumulation. Grain-filling duration of the spring wheats ranged from 56.4 to 47.0 d at 15/15 °C, and from 23.8 to 18.1 d at 30/25 °C. Grain number per spike decreased from 15/15 °C to 30/25 °C. The inverse of grain-filling duration was linearly related to mean temperature, with the intercept on the x-axis (the base temperature of grain filling) being the same for all cultivars. Variation for grain-filling duration among the genotypes tested was present, although small in relation to temperature effects. Breeding for extended grain-filling duration as a strategy for increasing wheat grain yield in a warm climate will thus be difficult. However, an application of the degree-day concept would be desirable. Key words: Triticum aestivum (L.), grain-filling duration, rate of grain filling, temperature


1994 ◽  
Vol 74 (4) ◽  
pp. 681-686 ◽  
Author(s):  
S. D. Duguid ◽  
A. L. Brûlé-Babel

Final grain dry weight, a component of yield in spring wheat, is determined by the rate and duration of grain filling. The objective of this study was to compare grain dry weight and rate and duration of grain filling amongst five spring wheat genotypes (Triticum aestivum L.) that differed in time to maturity. Glenlea, Katepwa, PT516, Roblin, and Wildcat were sown in replicated trials on four seeding dates in 1988 and 1989 at Winnipeg, Manitoba. Mean grain dry weight was measured at various intervals from anthesis to maturity. A logistic equation was used to characterize grain filling and estimate final grain dry weight, and the duration and maximum rate of grain filling. Stepwise multivariate analysis indicated that final grain dry weight was the most important variable characterizing the grain filling curves, followed by duration and then maximum rate of grain filling. The highest grain dry weights were produced by Glenlea (40.4 mg) and Wildcat (36.9 mg). Roblin (34.9 mg) was intermediate in grain dry weight while Katepwa (32.4 mg) and PT516 (30.3 mg) produced the smallest grains. Genotypes with the highest grain dry weights had shorter durations and higher maximum rates of grain filling. Key words:Triticum aestivum L., grain filling, duration, rate, phenological development, yield


2007 ◽  
Vol 50 (4) ◽  
pp. 504-507 ◽  
Author(s):  
Kamaluddin ◽  
Rishi Muni Singh ◽  
Malik Zainul Abdin ◽  
Mather Ali Khan ◽  
Tanweer Alam ◽  
...  

2008 ◽  
Vol 3 (1) ◽  
pp. 75-82 ◽  
Author(s):  
Milka Brdar ◽  
Marija Kraljević-Balalić ◽  
Borislav Kobiljski

AbstractFinal grain dry weight, a component of yield in wheat, is dependent on the duration and the rate of grain filling. The purpose of the study was to compare the grain filling patterns between common wheat, (Triticum aestivum L.), and durum wheat, (Triticum turgidum L. var. durum), and investigate relationships among grain filling parameters, yield components and the yield itself. The most important variables in differentiating among grain filling curves were final grain dry weight (W) for common wheat genotypes and grain filling rate (R) for durum wheat genotypes; however, in all cases the sets of variables important in differentiating among grain filling curves were extended to either two or all three parameters. Furthermore, in one out of three environmental conditions and for both groups of genotypes, the most important parameter in the set was grain filling duration (T). It indicates significant impact of environmental conditions on dry matter accumulation and the mutual effect of grain filling duration and its rate on the final grain dry weight. The medium early anthesis date could be associated with further grain weight and yield improvements in wheat. Grain filling of earlier genotypes occurs in more temperate environments, which provides enough time for gradual grain fill and avoids the extremes of temperature and the stress of dry conditions.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7738
Author(s):  
Zhaoan Sun ◽  
Shuxia Wu ◽  
Biao Zhu ◽  
Yiwen Zhang ◽  
Roland Bol ◽  
...  

Information on the homogeneity and distribution of 13carbon (13C) and nitrogen (15N) labeling in winter wheat (Triticum aestivum L.) is limited. We conducted a dual labeling experiment to evaluate the variability of 13C and 15N enrichment in aboveground parts of labeled winter wheat plants. Labeling with 13C and 15N was performed on non-nitrogen fertilized (−N) and nitrogen fertilized (+N, 250 kg N ha−1) plants at the elongation and grain filling stages. Aboveground parts of wheat were destructively sampled at 28 days after labeling. As winter wheat growth progressed, δ13C values of wheat ears increased significantly, whereas those of leaves and stems decreased significantly. At the elongation stage, N addition tended to reduce the aboveground δ13C values through dilution of C uptake. At the two stages, upper (newly developed) leaves were more highly enriched with 13C compared with that of lower (aged) leaves. Variability between individual wheat plants and among pots at the grain filling stage was smaller than that at the elongation stage, especially for the −N treatment. Compared with those of 13C labeling, differences in 15N excess between aboveground components (leaves and stems) under 15N labeling conditions were much smaller. We conclude that non-N fertilization and labeling at the grain filling stage may produce more uniformly 13C-labeled wheat materials, whereas the materials were more highly 13C-enriched at the elongation stage, although the δ13C values were more variable. The 15N-enriched straw tissues via urea fertilization were more uniformly labeled at the grain filling stage compared with that at the elongation stage.


2012 ◽  
Vol 58 (No. 12) ◽  
pp. 534-539 ◽  
Author(s):  
G.Q. Wu ◽  
L.N. Zhang ◽  
Y.Y. Wang

 To investigate the responses of growth and antioxidant enzymes to osmotic stress in two different wheat cultivars, one drought tolerant (Heshangtou, HST) and the other drought sensitive (Longchun 15, LC15), 15-day-old wheat seedlings were exposed to osmotic stress of –0.25, –0.50, and –0.75 MPa for 2 days. It is found that osmotic stress decreased shoot length in both wheat cultivars, whereas to a lesser degree in HST than in LC15. The contents of malondialdehyde (MDA) and the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) of shoot in both wheat cultivars were increased by osmotic stress. It is clear that MDA contents increased less in the more drought tolerant cultivar HST than in drought sensitive one LC15. On the contrary, POD and CAT activities increased more in HST than LC15 under osmotic stress. As the activity of SOD, however, no significant differences were found between HST and LC15. These results suggest that wheat cultivar HST has higher activities of antioxidant enzymes such as POD and CAT to cope with oxidative damage caused by osmotic stress compared to sensitive LC15.  


1965 ◽  
Vol 45 (6) ◽  
pp. 591-600 ◽  
Author(s):  
Hugh McKenzie

Inheritance of stem solidness was studied in populations of F3 and B2 lines from the Red Bobs × C.T. 715 and Redman × S-615 (Triticum aestivum L.) crosses and backcrosses. The data supported the hypothesis that the varieties in each cross differed by four genes for stem solidness. In both crosses, one gene exerted a major influence in that its allele for hollowness in the homozygous condition was epistatic to the other three genes. The other three genes within each cross were similar in their influence on solidness. Between the two crosses, corresponding genes differed in some degree.Genetic analyses and correlation coefficients both revealed a close association between sawfly resistance and stem solidness in the Red Bobs × C.T. 715 cross indicating that the stem solidness character was largely responsible for conditioning the degree of sawfly reaction in a plant.In both crosses, a weak negative correlation was found between stem solidness and height. Stem solidness was not associated with bunt (race T-2) reaction, glume color, awn type, or heading date.


Sign in / Sign up

Export Citation Format

Share Document