scholarly journals Corn root growth and nutrient accumulation improved by five years of repeated cattle manure addition to eroded Chinese Mollisols

2012 ◽  
Vol 92 (3) ◽  
pp. 521-527 ◽  
Author(s):  
Keqin Zhou ◽  
Xiaobing Liu ◽  
Xingyi Zhang ◽  
Yueyu Sui ◽  
S. J. Herbert ◽  
...  

Zhou, K., Liu, X., Zhang, X., Sui, Y., Herbert, S. J. and Xia, Y. 2012. Corn root growth and nutrient accumulation improved by five years of repeated cattle manure addition to eroded Chinese Mollisols. Can. J. Soil Sci. 92: 521–527. The use of fertilizers with additional cattle manure application on eroded soil has been reported to improve cereal yields. Limited research exists on the long-term effect of cattle manure on root growth and nutrient uptake by corn (Zea mays L.) grown on eroded soils. A field experiment was established in Hailun city, Northeast China to determine the impact of long-term cattle manure addition on corn production in eroded Mollisols. There were five levels of simulated-erosion, which removed 0, 5, 10, 20, 30 cm of topsoil. Two soil amendments were: (1) chemical fertilizer at the rate normally used by farmers in the region and (2) chemical fertilizer plus 15 000 kg ha−1 (dry weight basis) of cattle manure. Root growth (length, surface area and dry weight) was assessed at the three-leaf stage. Nitrogen (N), phosphorus (P) and potassium (K) uptake and accumulation by corn were evaluated at the three-leaf stage and at harvest. Compared with chemical fertilizer alone, 5 yr of repeated cattle manure addition significantly increased root surface area by 18–35%, and root dry weight by 45–129% in soil with simulated-erosion. The improvement of root growth by manure application was mainly correlated with the changes in larger size aggregate. N content increased by 12–59%, P by 31–129%, and K by 297–494% in corn at the three-leaf stage, and the same trend was found at harvest. Long-term cattle manure addition increased corn yield by 7% in soils with 5 cm topsoil removal, and gave similar yields in soils with 10 and 20 cm topsoil removal as non-eroded plots receiving chemical fertilizer only. Our results suggest that the increased corn yield in manure-amended soils was related to greater N, P and K accumulation due to larger root surface area and biomass. Addition of cattle manure with chemical fertilizer would be a practical and effective approach to restore soil productivity and improve corn yields in eroded Chinese Mollisols.

HortScience ◽  
2012 ◽  
Vol 47 (8) ◽  
pp. 1085-1090 ◽  
Author(s):  
Mara Grossman ◽  
John Freeborn ◽  
Holly Scoggins ◽  
Joyce Latimer

The objective of this study is to evaluate the branching effect of benzyladenine (BA) on herbaceous perennial plants during the production of rooted cuttings (liners) and to examine and quantify the root growth of these liners using multiple methods of root evaluation. Five crops were studied: Agastache Clayt. Ex Gronov. ‘Purple Haze’, Gaura lindheimeri Engelm. & A. Gray ‘Siskiyou Pink’, Lavandula ×intermedia Emeric ex Loisel. ‘Provence’, Leucanthemum ×superbum (Bergmans ex J.W. Ingram) Bergmans ex Kent. ‘Snowcap’, and Salvia ×sylvestris L. (pro sp.) ‘May Night’. After rooting but before transplant, BA was applied to rooted cuttings as four treatments: controls (0 mg·L−1), one application of 300 mg·L−1, two applications of 300 mg·L−1, or one application of 600 mg·L−1. Results varied by crop; all crops except Salvia had increased branching as measured as either increased lateral or basal branches and/or increased leaders at 3 to 4 weeks after initial treatment. Four crops showed reduced root growth, whereas Gaura was unaffected. Root dry weight was found to be highly correlated with root surface area and root volume. After transplant and growing out, branching of the finished plants was increased in Gaura and Lavandula, unaffected in Salvia and Leucanthemum, and decreased in Agastache. Treating rooted cuttings with BA before transplant increased branching but the effects were not long lasting, which suggests that additional applications at or after transplant may improve finished plant quality. Reductions in root growth noted in rooted cuttings did not affect the growth of finished plants. Chemical names: N-(phenylmethyl)-1H-purine-6-amine (benzyladenine, BA).


2018 ◽  
Vol 28 (5) ◽  
pp. 629-636 ◽  
Author(s):  
Matthew B. Bertucci ◽  
David H. Suchoff ◽  
Katherine M. Jennings ◽  
David W. Monks ◽  
Christopher C. Gunter ◽  
...  

Grafting of watermelon (Citrullus lanatus) is an established production practice that provides resistance to soilborne diseases or tolerance to abiotic stresses. Watermelon may be grafted on several cucurbit species (interspecific grafting); however, little research exists to describe root systems of these diverse rootstocks. A greenhouse study was conducted to compare root system morphology of nine commercially available cucurbit rootstocks, representing four species: pumpkin (Cucurbita maxima), squash (Cucurbita pepo), bottle gourd (Lagenaria siceraria), and an interspecific hybrid squash (C. maxima × C. moschata). Rootstocks were grafted with a triploid watermelon scion (‘Exclamation’), and root systems were compared with nongrafted (NG) and self-grafted (SG) ‘Exclamation’. Plants were harvested destructively at 1, 2, and 3 weeks after transplant (WAT), and data were collected on scion dry weight, total root length (TRL), average root diameter, root surface area, root:shoot dry-weight ratio, root diameter class proportions, and specific root length. For all response variables, the main effect of rootstock and rootstock species was significant (P < 0.05). The main effect of harvest was significant (P < 0.05) for all response variables, with the exception of TRL proportion in diameter class 2. ‘Ferro’ rootstock produced the largest TRL and root surface area, with observed values 122% and 120% greater than the smallest root system (‘Exclamation’ SG), respectively. Among rootstock species, pumpkin produced the largest TRL and root surface area, with observed values 100% and 82% greater than those of watermelon, respectively. These results demonstrate that substantial differences exist during the initial 3 WAT in root system morphology of rootstocks and rootstock species available for watermelon grafting and that morphologic differences of root systems can be characterized using image analysis.


Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1840 ◽  
Author(s):  
Bateer Baiyin ◽  
Kotaro Tagawa ◽  
Mina Yamada ◽  
Xinyan Wang ◽  
Satoshi Yamada ◽  
...  

Crop production under hydroponic environments has many advantages, yet the effects of solution flow rate on plant growth remain unclear. We conducted a hydroponic cultivation study using different flow rates under light-emitting diode lighting to investigate plant growth, nutrient uptake, and root morphology under different flow rates. Swiss chard plants were grown hydroponically under four nutrient solution flow rates (2 L/min, 4 L/min, 6 L/min, and 8 L/min). After 21 days, harvested plants were analyzed for root and shoot fresh weight, root and shoot dry weight, root morphology, and root cellulose and hemicellulose content. We found that suitable flow rates, acting as a eustress, gave the roots appropriate mechanical stimulation to promote root growth, absorb more nutrients, and increase overall plant growth. Conversely, excess flow rates acted as a distress that caused the roots to become compact and inhibited root surface area and root growth. Excess flow rate thereby resulted in a lower root surface area that translated to reduced nutrient ion absorption and poorer plant growth compared with plans cultured under a suitable flow rate. Our results indicate that regulating flow rate can regulate plant thigmomorphogenesis and nutrient uptake, ultimately affecting hydroponic crop quality.


2020 ◽  
Vol 21 (5) ◽  
Author(s):  
Issukindarsyah Issukindarsyah ◽  
Endang Sulistyaningsih ◽  
Didik Indradewa ◽  
Eka Tarwaca Susila Putra

Abstract. Issukindarsyah, Sulistyaningsih E, Indradewa D, Putra ETS. 2020. The growth of three varieties of black pepper (Piper nigrum) under different light intensities related to indigenous hormones role. Biodiversitas 21: 1778-1785. Low light intensity causes the alteration of plant biochemical and morphological as the mechanism of adaptation. The experiment used split-plot design with three replications. The main plots were three light intensity levels, i.e. 100%, 75%, and 50% radiation; while subplots were three varieties namely Nyelungkup, Petaling 1 and Petaling 2. This research was conducted to figure out the effect of shadings on hormones and the growth of three varieties of black pepper (Piper nigrum L.). The results showed that in initial vegetative growth, varieties of Nyelungkup and Petaling 1 had higher growth of both ortotroph and plagiotroph branches, leaf number, leaf area, length of root, root surface area, plant dry weight, nett assimilation rate, and plant growth rate than the variety of Petaling 2. The light intensity of 50% and 75% increased the auxin and gibberellin contents of the leaf but they did not affect the zeatin. The maximum gibberellin and auxin contents of leaf were recorded at 75% light intensity. The 50% and 75% light intensity raised the length, diameter, and internode of ortotroph branch; number, length, and internode of plagiotroph branch; leaf number; leaf area; leaf area ratio; length of root; root surface area; plant growth rate and plant dry weight related to indigenous hormones role.


Author(s):  
Sylvia Morais de Sousa ◽  
Christiane Abreu de Oliveira ◽  
Daniele Luiz Andrade ◽  
Chainheny Gomes de Carvalho ◽  
Vitória Palhares Ribeiro ◽  
...  

2017 ◽  
Vol 6 (2) ◽  
pp. 58 ◽  
Author(s):  
Daishu Yi ◽  
Timothy Schwinghamer ◽  
Yolande Dalpé ◽  
Jaswinder Singh ◽  
Shahrokh Khanizadeh

Wheat is an important crop, playing inevitable roles in human life, ranging from major food resource to raw material for biofuel. However, due to the dramatically reduced available arable areas and increasingly severe abiotic and biotic stresses, wheat production nowadays faces extreme challenges.. Many approaches have been explored to increase wheat yield including development of new cultivars. One of the most promising approaches is the application of the naturally existent arbuscular mycorrhiza (AM), a mutualistic symbiosis originated over 400 million years ago. AM have long been known to form mutualistic symbiosis with various plants to enhance yield production and to improve stress tolerance, especially drought and salinity. But the benefits vary among AM strains and plant species. Therefore, the objective of the study was to investigate the influence of four AM strains colonized on four selected spring wheat varieties under three salt concentrations (0, 50, 100 mmol/L). The results demonstrated that wheat inoculated with arbuscular mycorrhizal strains Funneliformis mosseae and Rhizoglomusirregulare mitigated yield losses caused by increased salinity stresses as well as strengthened root growth in comparison with non-inoculated plant controls. Salinity stress, however, had non-significant negative effects on most variables, except for grain yield, root surface area and root dry weight, in which a significant decrease was observed in root surface area and root dry weight with the increasing of saline concentration.


Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1542
Author(s):  
Chengbo Zhou ◽  
Yubin Zhang ◽  
Wenke Liu ◽  
Lingyan Zha ◽  
Mingjie Shao ◽  
...  

Light is a crucial environmental signal and photosynthetic energy for plant growth, development, and primary and secondary metabolism. To explore the effects of light quality on the growth and root exudates of hydroponic lettuce (Lactuca sativa L.), white LED (W, control) and four the mixtures of red (R) and blue (B) LED with different R/B light intensity ratios (R/B = 2, 2R1B; R/B = 3, 3R1B; R/B = 4, 4R1B; and R/B = 8, 8R1B) were designed. The results showed that the biomass of lettuce under 8R1B and W treatments was higher than that under other light quality treatments. The photosynthetic rate (Pn) under red and blue light was significantly higher than that of white light. Total root length, root surface area, and root volume were the highest under 8R1B. 4R1B treatment significant increased root activity by 68.6% compared with W. In addition, total organic carbon (TOC) content, TOC content/shoot dry weight, TOC content/root dry weight, and TOC content/root surface area were the highest under 4R1B. Moreover, 8R1B treatment reduced the concentration of benzoic acid and salicylic acid, and the secretion ability of benzoic acid and salicylic acid by per unit root surface area and accumulation by per unit shoot dry weight. In addition, 2R1B and 3R1B reduced the secretion ability of gallic acid and tannic acid by per unit root surface area and accumulation by per unit shoot dry weight. In conclusion, this study showed that the secretion of autotoxins could be reduced through the mediation of red and blue light composition of LEDs in a plant factory. In terms of autotoxin secretion reduction efficiency and yield performance of lettuce, 8R1B light regime is recommended for practical use.


2007 ◽  
Vol 33 (6) ◽  
pp. 428-432
Author(s):  
William Hascher ◽  
Christina Wells

The Terravent TMsoil injection device (Pinnacle Concepts, Ltd., Cornwall, UK) uses compressed nitrogen gas to fracture compacted soil and permits the subsequent injection of liquid amendments. In the current study, we measured fine root growth and architecture in soil that had received one of four treatments: 1) Terravent injections, 2) Terravent injections followed by liquid amendment (MycorTree® Injectable; PHC, Inc., Pittsburgh, PA, U.S.), 3) addition of amendment only, and 4) an untreated control. The experiment was conducted on ten red maples (Acer rubrum) growing on a moderately compacted urban clay soil next to a busy road on the Clemson University campus. Treatments were applied in April 2002. Seven weeks later, soil cores were pulled from locations adjacent to the injection sites, and fine roots (less than 2 mm [0.08 in] in diameter) from each core were washed free of soil. A variety of root parameters were measured, including length, surface area, diameter distribution, and mass. Terravent treatment had no effect on any root parameters measured. Application of MycorTree was associated with small, statistically significant reductions in root diameter, root mass density (mg root/cm 3soil), and root surface area density (cm 2root/cm 3soil).


1994 ◽  
Vol 123 (3) ◽  
pp. 327-332 ◽  
Author(s):  
C. G. Kjellström ◽  
H. Kirchmann

SUMMARYAt the research farm of the Swedish University of Agricultural Sciences, Uppsala, above- and belowground production and changes with time in root length, mean root radius and root surface area of spring oilseed rape were studied during the growing seasons 1987 and 1990. In both years, the highest root growth rate was recorded during the stem elongation phase, and the highest shoot growth rate during flowering. The root: shoot ratio decreased throughout the whole period of root sampling, from 0·64 to 0·16, during the cool and wet first year. In the warmer and drier second year, the ratio increased to a maximum of 0·72 when flowering started, and thereafter decreased. More than 80% of the root dry matter was found in the topsoil. Roots were longer and thinner in the dry and warm 1990 than in the wet and cool 1987. Maximum root length was c. 4·9 km/m2 in 1990, and mean root radius varied between 01 and 0·7 mm. Increases in root surface area during periods of root growth were due to increased root length rather than to increased mean root radius.


2000 ◽  
Vol 78 (3) ◽  
pp. 381-387 ◽  
Author(s):  
Edward Berkelaar ◽  
Beverley Hale

Two cultivars of durum wheat (Triticum turgidum L.) with known, and different, grain-Cd accumulation were used to compare root tissue accumulation of Cd with root morphology. Six-day-old 'Kyle' and 'Arcola' seedlings were exposed to a range of Cd2 + concentrations (3.91 × 10-8 - 3.91 × 10-7 M) for 0-200 min, and root Cd contents for the two cultivars were compared with root morphological characteristics. 'Kyle' roots contained 35% less Cd per root system after 200 min of exposure and had less root surface area and fewer root tips than 'Arcola'. 'Kyle' roots also contained 30% less Cd per gram of dry weight than 'Arcola' roots after 200 min of exposure. 'Kyle' roots also had fewer root tips per unit of root dry weight and less surface area per unit of dry weight (DW) than 'Arcola'. When cadmium concentration data (µg·g-1 DW) were expressed per unit of root surface area (µg·cm-2) and per number of root tips (µg·tip-1), the difference in root Cd content between the two cultivars was smaller. These results suggest that greater root Cd content of 'Arcola' than 'Kyle' can be explained by differences in morphology, specifically that a greater surface area and more root tips in 'Arcola' leads to greater Cd accumulation in root tissue.Key words: cadmium accumulation, durum wheat, root morphology.


Sign in / Sign up

Export Citation Format

Share Document