MINERALOGY OF THE QUEENS LOAM AND QUEENS CLAY LOAM SOILS OF EASTERN NEW BRUNSWICK

1961 ◽  
Vol 41 (2) ◽  
pp. 147-159
Author(s):  
S. W. Reeder ◽  
H. G. Dion ◽  
A. L. McAllister

On the basis of petrographic examination of the sand fraction and the X-ray diffraction, differential thermal, electron microscope, ethylene glycol retention, base exchange capacity and fusion analyses of the clay fraction it was concluded that these soils were developed on similar parent materials, were derived from common geological formations, and have been subjected to similar weathering and development processes since time of deposition.

Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 611
Author(s):  
Celia Marcos ◽  
María de Uribe-Zorita ◽  
Pedro Álvarez-Lloret ◽  
Alaa Adawy ◽  
Patricia Fernández ◽  
...  

Chert samples from different coastal and inland outcrops in the Eastern Asturias (Spain) were mineralogically investigated for the first time for archaeological purposes. X-ray diffraction, X-ray fluorescence, transmission electron microscopy, infrared and Raman spectroscopy and total organic carbon techniques were used. The low content of moganite, since its detection by X-ray diffraction is practically imperceptible, and the crystallite size (over 1000 Å) of the quartz in these cherts would be indicative of its maturity and could potentially be used for dating chert-tools recovered from archaeological sites. Also, this information can constitute essential data to differentiate the cherts and compare them with those used in archaeological tools. However, neither composition nor crystallite size would allow distinguishing between coastal and inland chert outcrops belonging to the same geological formations.


Minerals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 71
Author(s):  
Andrew Hurst ◽  
Michael Wilson ◽  
Antonio Grippa ◽  
Lyudmyla Wilson ◽  
Giuseppe Palladino ◽  
...  

Mudstone samples from the Moreno (Upper Cretaceous-Paleocene) and Kreyenhagen (Eocene) formations are analysed using X-ray diffraction (XRD) and X-ray fluorescence (XRF) to determine their mineralogy. Smectite (Reichweite R0) is the predominant phyllosilicate present, 48% to 71.7% bulk rock mineralogy (excluding carbonate cemented and highly bio siliceous samples) and 70% to 98% of the <2 μm clay fraction. Opal CT and less so cristobalite concentrations cause the main deviations from smectite dominance. Opal A is common only in the Upper Kreyenhagen. In the <2 μm fraction, the Moreno Fm is significantly more smectite-rich than the Kreyenhagen Fm. Smectite in the Moreno Fm was derived from the alteration of volcaniclastic debris from contemporaneous rhyolitic-dacitic magmatic arc volcanism. No tuff is preserved. Smectite in the Kreyenhagen Fm was derived from intense sub-tropical weathering of granitoid-dioritic terrane during the hypothermal period in the early to mid-Eocene; the derivation from local volcanism is unlikely. All samples had chemical indices of alteration (CIA) indicative of intense weathering of source terrane. Ferriferous enrichment and the occurrence of locally common kaolinite are contributory evidence for the intensity of weathering. Low concentration (max. 7.5%) of clinoptilolite in the Lower Kreyenhagen is possibly indicative of more open marine conditions than in the Upper Kreyenhagen. There is no evidence of volumetrically significant silicate diagenesis. The main diagenetic mineralisation is restricted to low-temperature silica phase transitions.


2013 ◽  
Vol 25 (1) ◽  
pp. 541-546
Author(s):  
R.S. Kaliramana ◽  
B.S. Pannu ◽  
J.P. Singh

Minerals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 718
Author(s):  
Isis Armstrong Dias ◽  
Leonardo Fadel Cury ◽  
Bruno Guimarães Titon ◽  
Gustavo Barbosa Athayde ◽  
Guilherme Fedalto ◽  
...  

Mg clay minerals are usually associated with carbonates in alkaline-saline environments, precipitated from solution and/or transformation from other minerals. The aim of this research is to identify the mineralogy and geochemistry of clay minerals in different alkaline lakes in the Nhecolândia region, the southernmost region of the Pantanal wetland (Brazil). Sediment samples were analyzed by X-ray diffraction, X-ray fluorescence, scanning electron microscopy and transmission electron microscopy. Water samples were analyzed, determining their main cations and anions, in order to understand their relationship with the clays. The analyses allowed classifying the water bodies as saline, oligosaline and freshwater lakes. The sediments are composed mainly of quartz and a fine-clay fraction, dominated by illite, kaolinite and smectite. The XRD results showed illite and smectite mixed-layered in the saline lakes at Barranco Alto farm, whereas at Nhumirim farm, trioctahedral smectite was only observed in one lake. The smectite minerals were normally identified coupled with calcite at the top of the sequences, associated with exopolymeric substances (EPS) in the lakes, suggesting that these minerals are precipitating due to the physical-chemical and biological conditions of the water bodies.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Samuel Tetteh ◽  
Andrews Quashie ◽  
Michael Akrofi Anang

Three clay samples (E1, E2, and C1) extracted from different parts of Ghana have been purified by sedimentation. The samples were further characterized by powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), cation exchange capacity (CEC), and point of zero charge (pHpzc). PXRD and FT-IR data revealed the samples to be predominantly muscovite clay with percentages ranging from 82.71 to 91.33%. The surfaces were mostly cationic with pHpzc ranging from 5.58 to 6.40. Morphological studies by SEM confirmed the crystalline nature of the surfaces which is suitable for adsorption studies. Time-dependent adsorption studies show that C1 is a good candidate for the adsorption of chlorophenols, methyl orange, and Eriochrome Black T.


Soil Research ◽  
1993 ◽  
Vol 31 (1) ◽  
pp. 51 ◽  
Author(s):  
DC Golden ◽  
JB Dixon ◽  
Y Kanehiro

The mineralogical composition of the surface soil horizon (0-15 cm) of Wahiawa soil (Tropeptic Eutrustox) was investigated by X-ray diffraction (XRD), high gradient magnetic separation (HGMS), transmission electron microscopy (TEM), and infrared methods. The concentration of lithiophorite decreased with particle size and none was present in the clay fraction as indicated by XRD. Lithiophorite was further concentrated from the crushed sand-sized fraction by HGMS. Hexagonal, electron-dense, often twinned lithiophorite particles were identified by electron diffraction. Differential infrared (DIR) spectra obtained by dissolving Mn oxides in acidified hydroxylamine hydrochloride (HAHC) indicated lithiophorite as the HAHC-soluble Mn-phase. Lithiophorite compositiion, as revealed by chemical analysis of the HAHC extracts, consisted of appreciable amounts of Mn, Al, Zn, Co and Mg, and less than stoichiometric amounts of Li. Sodium hydroxide treatment apparently altered the lithiophorite, as revealed by the DIR spectrum of the hydroxylamine-soluble fraction of the NaOH-treated sample compared with the untreated sample. The high crystallinity of the lithiophorite was suggested by its resistance to chemical dissolution and narrow X-ray diffraction lines. No evidence for the presence of todorokite or birnessite was found, contrary to earlier reports. Examination of sand-sized nodules by scanning electron microscopy indicated large (2-5 �m) platy lithiophorite crystals at the surface of these nodules. Electron microprobe analysis of these platy particles indicated iron enrichment near the surface. The freshly fractured nodule surface revealed numerous unaltered platy crystals of lithiophorite filling the veins of the nodule.


Clay Minerals ◽  
1974 ◽  
Vol 10 (3) ◽  
pp. 135-144 ◽  
Author(s):  
G. Brown ◽  
P. Bourguignon ◽  
J. Thorez

AbstractA bluish-green clay found in veins cutting across brecciated slates of the Llanvirnian stage at Huy, Belgium, is shown by X-ray diffraction and chemical analysis to be a lithium-bearing, aluminium-rich, regular mixed layer montmorillonite-chlorite with associated pyrophyllite, nacrite and quartz and smaller amounts of calcite and ankerite. The cation exchange capacity of the purified air-dry magnesium saturated clay is 49 mEq/100 g and its structural formula isThe problem of the nomenclature of regular mixed layer montmorillonite-chlorites is discussed.


2013 ◽  
Vol 37 (2) ◽  
pp. 295-306 ◽  
Author(s):  
Livia Arantes Camargo ◽  
José Marques Júnior ◽  
Gener Tadeu Pereira

A good knowledge of the spatial distribution of clay minerals in the landscape facilitates the understanding of the influence of relief on the content and crystallographic attributes of soil minerals such as goethite, hematite, kaolinite and gibbsite. This study aimed at describing the relationships between the mineral properties of the clay fraction and landscape shapes by determining the mineral properties of goethite, hematite, kaolinite and gibbsite, and assessing their dependence and spatial variability, in two slope curvatures. To this end, two 100 × 100 m grids were used to establish a total of 121 regularly spaced georeferenced sampling nodes 10 m apart. Samples were collected from the layer 0.0-0.2 m and analysed for iron oxides, and kaolinite and gibbsite in the clay fraction. Minerals in the clay fraction were characterized from their X-ray diffraction (XRD) patterns, which were interpreted and used to calculate the width at half height (WHH) and mean crystallite dimension (MCD) of iron oxides, kaolinite, and gibbsite, as well as aluminium substitution and specific surface area (SSA) in hematite and goethite. Additional calculations included the goethite and hematite contents, and the goethite/(goethite+hematite) [Gt/(Gt+Hm)] and kaolinite/(kaolinite+gibbsite) [Kt/(Kt+Gb)] ratios. Mineral properties were established by statistical analysis of the XRD data, and spatial dependence was assessed geostatistically. Mineralogical properties differed significantly between the convex area and concave area. The geostatistical analysis showed a greater number of mineralogical properties with spatial dependence and a higher range in the convex than in the concave area.


1988 ◽  
Vol 3 (3) ◽  
pp. 144-152 ◽  
Author(s):  
G. A. Raab

AbstractThe method described in this paper is a strict protocol for X-ray diffraction (XRD) analysis of mineral phases found in soils. Its application is not restricted to soils and is an attempt to standardize XRD sample preparation and analysis. The protocol requires the particle size of the < 2 mm - 0.002 mm fraction be reduced to 0.002 mm before analysis. In die qualitative section, the clay fraction ( < 0.002 mm particle size) is prepared as oriented slides. The suspended clay fraction is saturated with ethylene glycol, K +, and Mg+2; pipeted; air-dried; heat-treated at 110°C, 350°C, and 550°C; and X-rayed at each step in order to properly identify the clay minerals. In the quantitative section, the method employs a matrix-flushing agent, corundum (Al2O3). The corundum acts also as an internal standard, a calibration standard, and a reference standard. The suspended clay fraction is freeze-dried and corundum is added to each sample. Randomly oriented powder mounts are prepared from the < 2 mm - 0.002 mm fraction, and the < 0.002 mm fraction, and X-rayed. A series of reference standards are prepared based on the existing mineralogy, corundum is added, and each mixture is X-rayed. The software integrates the area under specific peaks (chosen for intensity and no overlap) in each sample, calculates the reference intensity ratios (RIRs) and calculates the percentage of each mineral based on the equation of Chung (1974). The attention to detail allows documentation and verification of the results yielding data of known quality.


Clay Minerals ◽  
2010 ◽  
Vol 45 (2) ◽  
pp. 229-240 ◽  
Author(s):  
M. Rebelo ◽  
F. Rocha ◽  
E. Ferreira Da Silva

AbstractThe use of pelitic geological materials for the treatment of muscle-bone-skin pathologies, by application of a cataplasm made of clay and mineral water mixture, is currently receiving attention and interest from the general public and scientific community. In Portugal there are several natural occurrences of clays/muds which are used for pelotherapy and/or geotherapy. These are carried out either indoors (thalassotherapy and thermal centres) or outdoors, in natural sites generally located near the seaside. The aim of this study is to assess the mineralogical and physicochemical properties of Portuguese raw materials for therapeutic purposes. These materials were collected from different Portuguese Mesozoic-Cenozoic geological formations located in the neighbourhood of thermal centres or at beaches known from their empirical applications. X-ray diffraction (XRD) and scanning electron microscopy (SEM-EDS) were used to assess the mineralogical composition of these clays. Physicochemical properties, such as specific surface area, cation exchange capacity, plasticity/abrasiveness indices and heat diffusiveness were also determined. Having distinct geological ages and genesis, the materials examined are mainly illitic. Less abundant kaolinite and smectite are also present. With respect to their physicochemical properties, all samples have good thermal properties which make them potentially suitable for therapeutic or aesthetic purposes.


Sign in / Sign up

Export Citation Format

Share Document