EFFETS DE L'APPORT PROLONGE DE FUMIER DE BOVINS SUR QUELQUES PROPRIETES PHYSIQUES ET BIOLOGIQUES D'UN LOAM LIMONEUX NEUBOIS SOUS CULTURE DE MAÏS

1990 ◽  
Vol 70 (2) ◽  
pp. 259-262 ◽  
Author(s):  
A. N'DAYEGAMIYE ◽  
D. A. ANGERS

This study was undertaken to quantify the effects on long-term application of solid cattle manure on physical and biological properties of a Neubois silty loam. Rates of 0, 20, 40, 60, 80 and 100 Mg ha−1 manure were applied every 2 yr to the soil cropped to corn. Significant improvements, proportional to application rates, of water-stable aggregation, bulk density, and water content of the soil were measured. These physical properties were highly correlated with the soil microflora (0.83 ≤ r ≤ 0.98). A positive interaction exists between physical and biological properties of soils following long-term manure application. Key words: Solid cattle manure, aggregation, bulk density, biological activity

Author(s):  
Srimathie Priyanthika Indraratne ◽  
Matthew Spengler ◽  
Xiying Hao

Long term cattle manure applications build up nutrient pools and can lead to trace element enrichments in soils. The objectives of this study were to evaluate Cu and Zn loadings in the soil during continuous annual cattle manure applications and determine the time required for soil to return to its pre-manure available Cu and Zn levels after manure is discontinued. The manure application rates were 0, 30, 60, and 90 Mg ha-1 for rainfed and 0, 60, 120, and 180 Mg ha-1 (wet weight) for irrigated plots. While manure was applied for 45 years in some plots, applications were terminated in one subset of treatments after 14 years and in another subset after 30 years to study legacy effects after 31 and 15 years, respectively. Soil samples were collected in the fall of 2003, 2008, 2013, and 2018 and analyzed for available Cu and Zn. Crops were grown in all years continuously with Cu and Zn concentrations measured in both silage and grains harvested. The regression model developed using data collected suggests long legacy effects with recovery time to pre-manure levels ranging from 10-20 years for Cu and 23-41 years for Zn at irrigated and 10-24 for Cu and 21-32 years for Zn under rainfed, respectively. Long term applications of cattle manure could lead to accumulation of Cu and Zn, creating long-lasting legacy effects in soils with the increased environmental risk of leaching to groundwater


1989 ◽  
Vol 69 (1) ◽  
pp. 39-47 ◽  
Author(s):  
A. NDAYEGAMIYE ◽  
D. CÔTÉ

Chemical and biological properties were evaluated in 1987 on an acidic silty loam soil following a long-term field study established in 1978 and cultivated with silage corn. Treatments included a control, solid cattle manure (20, 40 and 60 Mg ha−1 FYM) and pig slurry (60, 120 m3 ha−1 SLU) applied every 2 yr and annually, respectively. No fertilizer was applied. The results of this study have shown that neither treatment significantly affected soil pH values, total-N contents and C:N ratios compared to the control. The cation exchange capacity (CEC) of the soil was significantly higher with FYM treatment than with control or SLU application. The highest rates of FYM and SLU have also increased (P < 0.05) soil organic carbon, microbial activity and potentially mineralizable nitrogen. The soil microflora populations (bacteria, fungi, actinomycetes, ammonifiers and nitrifiers) were greatly improved by both treatments. There were no significant differences in organic matter content or the relative amount of humic and fulvic acids between FYM and SLU plots. In spite of these results, FYM application (40 and 60 Mg ha−1) did affect more significantly the distribution of organic carbon in HA and the E4/E6 quotients than SLU additions. Humic acids extracted from SLU amended soils had a lower C content and lower E4/E6 ratios than humic acids from FYM soils. Long-term SLU application did not contribute to decreased organic matter content, CEC and humic acids yield, probably because of optimal organic residues returned to the soil by the corn crops. The FYM application generally improved soil chemical and biological properties. For a sustainable soil productivity, long-term SLU application should then be avoided in rotation in which small amounts of plant residues are returned, especially on soils with low organic matter contents. Key words: Organic matter, microbial activity, nitrogen mineralization potential, CEC, solid cattle manure, pig slurry


2005 ◽  
Vol 85 (3) ◽  
pp. 397-403 ◽  
Author(s):  
P. Qian ◽  
J J Schoenau ◽  
T. King ◽  
M. Japp

Increasing use of animal manures in Saskatchewan requires information on the effect of manure addition on the availability of soil K, Ca and Mg and their concentrations in plant tissue. To address these issues, we examined the effects of repeated application of liquid swine and solid cattle manure at low and high rates on extractable K, Ca and Mg in soils from three different long-term field trials in Saskatchewan, and on plant K, Ca and Mg concentrations in cereal straw grown on the soils. After 5 to 7 yr of manure application, extractable potassium in the soils was significantly increased, while extractable Ca and Mg tended to remain similar, or was decreased with swine manure addition. In the cereal straw, concentrations of K, Ca, and Mg were all increased by repeated swine manure application, such that there was no significant increase in the K/(Ca + Mg) ratio. However, the K/(Ca + Mg) ratio in the cereal straw grown on soil amended with the high rate of cattle manure was increased. These findings suggest that increased risk of tetany potential from manure application would mainly be associated with excessive application rates of cattle manure in these soils, but should be monitored in feeds grown on all manured soils.Key words:Soil extractable K, Ca, Mg and Na; cereal K, Ca and Mg concentrations, K/(Ca + Mg) ratio, tetany potential, urea, swine manure, cattle manure


2017 ◽  
Vol 63 (No. 5) ◽  
pp. 236-242 ◽  
Author(s):  
Gajda Anna M ◽  
Czyż Ewa A ◽  
Stanek-Tarkowska Jadwiga ◽  
Dexter Anthony R ◽  
Furtak Karolina M ◽  
...  

These studies were done in 2013–2016 on the effects of two tillage systems on the quality of a loamy sand soil (Eutric Fluvisol) and were based on a field experiment started in 2002. Winter wheat was grown in conventional tillage (CT) with mouldboard ploughing (inversion) tillage; and reduced (non-inversion) tillage (RT) based on soil crushing-loosening equipment and a rigid-tine cultivator. Chopped wheat straw was used as mulch in both treatments. The physical, chemical and biological properties of the soil were investigated. RT increased soil bulk density in the 0–5 cm and 5–10 cm depth layers in comparison with CT. The greatest content of soil organic carbon (SOC) was found in the 0–5 cm layer under RT. The BIOLOG EcoPlate System showed that soil under RT had a greater metabolic activity and diversity of microbial communities than soil under CT. RT improved the quality of the surface soil as shown by the greater content of SOC and microbial activity measured in terms of dehydrogenases. However, the mean yields of winter wheat under RT and CT were similar. This suggests that the effects of increased bulk density (BD) on yield can be compensated by the effects of the improved microbial status.


2020 ◽  
Author(s):  
Paloma Hueso-Gonzalez ◽  
Miriam Muñoz-Rojas

&lt;p&gt;Soil is an essential and non-renewable resource in natural and agricultural ecosystems with extremely slow formation and regeneration potential. In dryland areas, many ecosystems are being seriously affected by degradation processes because of an excessive use of agro-chemicals, deep tillage and intensive irrigation, among many other factors. The decline in soil organic matter is also becoming a major cause of soil degradation, particularly in dryland regions where low soil fertility cannot always maintain a sustainable production. The use of organic amendments in ecosystem restoration programs can be an effective technique for promoting soil restoration processes in degraded drylands and several studies have shown their bene&amp;#64257;ts for improving soil physical, chemical and biological properties. This recovery is a result of the rapid increment of organic matter and clay contents in the soil in the short term. In the long-term, soil structure becomes more stable and water holding capacity, permeability and infiltration are improved, whereas surface runoff and erosion are reduced. Nevertheless, there are many research gaps in the knowledge of the effects of climatic conditions on their application, as well as the adequate types of amendment and doses and decomposition rates. In this presentation, we evaluate the role of organic amendments as an effective strategy in dryland restoration, highlighting the effects of different amendment types, doses and application rates. We will speci&amp;#64257;cally address: (1) type of amendments and bene&amp;#64257;ts arising from their use, (2) application methods and more appropriate doses and, (3) potential risk derivates for their application. We also showcase some recent case studies using organic amendments in degraded dryland areas from Spain and Australia.&lt;/p&gt;


2021 ◽  
Vol 9 (2) ◽  
pp. 189
Author(s):  
Hyeonji Bae ◽  
Dabin Lee ◽  
Jae Joong Kang ◽  
Jae Hyung Lee ◽  
Naeun Jo ◽  
...  

The cellular macromolecular contents and energy value of phytoplankton as primary food source determine the growth of higher trophic levels, affecting the balance and sustainability of oceanic food webs. Especially, proteins are more directly linked with basic functions of phytoplankton biosynthesis and cell division and transferred through the food chains. In recent years, the East/Japan Sea (EJS) has been changed dramatically in environmental conditions, such as physical and chemical characteristics, as well as biological properties. Therefore, developing an algorithm to estimate the protein concentration of phytoplankton and monitor their spatiotemporal variations on a broad scale would be invaluable. To derive the protein concentration of phytoplankton in EJS, the new regional algorithm was developed by using multiple linear regression analyses based on field-measured data which were obtained from 2012 to 2018 in the southwestern EJS. The major factors for the protein concentration were identified as chlorophyll-a (Chl-a) and sea surface nitrate (SSN) in the southwestern EJS. The coefficient of determination (r2) between field-measured and algorithm-derived protein concentrations was 0.55, which is rather low but reliable. The satellite-derived estimation generally follows the 1:1 line with the field-measured data, with Pearson’s correlation coefficient, which was 0.40 (p-value < 0.01, n = 135). No remarkable trend in the long-term annual protein concentration of phytoplankton was found in the study area during our observation period. However, some seasonal difference was observed in winter protein concentration between the 2003–2005 and 2017–2019 periods. The algorithm is developed for the regional East/Japan Sea (EJS) and could contribute to long-term monitoring for climate-associated ecosystem changes. For a better understanding of spatiotemporal variation in the protein concentration of phytoplankton in the EJS, this algorithm should be further improved with continuous field surveys.


Author(s):  
Jasmina Cilerdzic ◽  
Mirjana Stajic ◽  
Jelena Vukojevic

Even though numerous lichen species possess significant medical potentials they are still unexplored, and particularly species and strains originating from Serbia. Therefore, the aim of this study was to evaluate the antioxidative and antimicrobial potential of ethanol extracts of Parmelia saxatilis and Pseudoevernia furfuracea collected in Serbia. The tested extracts were good scavengers of DPPH radicals, with capacities ranging from 14.76% to 79.76% in P. saxatilis and from 21.39% to 90.04% in P. furfuracea. In P. saxatilis level of DPPH? neutralisation was highly correlated with phenol content (r2 = 0.9981) and in P. furfuracea with amount of total flavonoides (r2 = 0.9641). The extract of P. furfuracea inhibited the growth of all tested microorganisms with exception of Aspergillus flavus, while P. saxatilis extract affected only growth of bacterial species. Among tested microorganisms, Staphylococcus aureus and Klebsiella pneumoniae were the most sensitive, while Enterococcus faecalis, Pseudomonas aeruginosa as well as micromycetes were the least sensitive to tested extracts. Because of these potentials and the fact that their long term usage does not have any negative side effects on organism and development of microbial resistance, the extracts could be included in conventional therapy.


Author(s):  
S. R. Fassnacht ◽  
M. Hultstrand

Abstract. The individual measurements from snowcourse stations were digitized for six stations across northern Colorado that had up to 79 years of record (1936 to 2014). These manual measurements are collected at the first of the month from February through May, with additional measurements in January and June. This dataset was used to evaluate the variability in snow depth and snow water equivalent (SWE) across a snowcourse, as well as trends in snowpack patterns across the entire period of record and over two halves of the record (up to 1975 and from 1976). Snowpack variability is correlated to depth and SWE. The snow depth variability is shown to be highly correlated with average April snow depth and day of year. Depth and SWE were found to be significantly decreasing over the entire period of record at two stations, while at another station the significant trends were an increase over the first half of the record and a decrease over the second half. Variability tended to decrease with time, when significant.


1999 ◽  
Vol 29 (7) ◽  
pp. 1101-1111 ◽  
Author(s):  
Steven G Newmaster ◽  
F Wayne Bell ◽  
Dale H Vitt

The effects of two silvicultural herbicides (Vision®, Release®) on bryophytes and lichens were studied in a harvested boreal mixedwood ecosystem. A completely randomized design with 115 plots of 1 m2 allowed direct comparison between herbicides and their effects on community dynamics. Regression models were used to analyze the relationship between herbicide application rates (0.71-6.72 kg active ingredient/ha) and changes in bryophyte and lichen abundance and species richness for 2 years following herbicide application. Results showed that bryophyte and lichen abundance and species richness decreased after herbicide treatments. In general, herbicide applications reduced the diversity of forest mesophytes and weedy colonizers to an ecosystem with only a few species of colonizers. A combination of clustering techniques and ANOVA were used to divide bryophytes and lichens into three ecologically defined response groups: herbicide-tolerant colonizers, semi tolerant long-term stayers from dry open forest, and sensitive forest mesophytes.


Sign in / Sign up

Export Citation Format

Share Document