Assessment of the contribution of denitrification to N losses from compacted grassland soil by NO3− disappearance and N2O production during anaerobic incubation

1999 ◽  
Vol 79 (1) ◽  
pp. 57-64 ◽  
Author(s):  
M. K. Abbasi ◽  
W. A. Adams

Decreases in herbage production and of N uptake and utilization have been observed on Denbigh series soils in mid-Wales after several years in permanent pasture. Laboratory experiments were conducted to examine the contribution of denitrification to N loss from these wet grassland soils. Denitrification capacity was measured in seived soil following the addition of KNO3 and maintained at 20°C under anoxic conditions. Emission of N2O was measured from intact field cores equilibrated under conditions of simulated "field capacity" using glucose as C substrate. The rate of loss of NO3−–N decreased with depth and in the 0–2.5 cm layer all added NO3−–N was lost in 10 d incubation. Net mineralization of NH4+–N occurred at about one-sixth of the rate of NO3−–N disappearance. The presence of NO3− reduced the rate of decrease in redox potential (Eh) and the Eh did not fall below about +200 mV until all NO3−–N had been lost. Emission of N2O was greatest between 6 and 48 h and denitrification rate decreased with depth. Addition of glucose increased N2O emission in the 2.5–5.7 cm layers indicating that C limitation to denitrification may occur at shallow depths in the soil profile of compacted grassland. On average, the total denitrification ranged between 15 and 20 kg N ha−1, equivalent to 20–30% of applied N. The potential rates of denitrification change markedly over quite shallow depths in these compacted grassland soils. Furthermore, since denitrification occurred at substantial rates under simulated field capacity, conditions conducive to denitrification are likely to persist for quite long periods in the moist climatic conditions. Key words: Compacted soil, denitrification, glucose, grassland, nitrous oxide

1996 ◽  
Vol 126 (4) ◽  
pp. 481-492 ◽  
Author(s):  
G. H. Rubæk ◽  
K. Henriksen ◽  
J. Petersen ◽  
B. Rasmussen ◽  
S. G. Sommer

SUMMARYAmmonia volatilization and denitrification were measured in a ryegrass field in Denmark after direct injection and application with trail hoses of an untreated cattle slurry and an anaerobically digested slurry in late May-early June 1993 and 1994. Ammonia volatilization was measured using a windtunnel system for a period of 8 days after slurry application. Denitrification was measured for a period of 21 days after slurry application. In an adjacent field experiment, nitrogen-uptake (N-uptake) was determined in the first two cuts of the ryegrass harvested after slurry application. N losses through ammonia volatilization were larger in 1993 than in 1994 due to differences in climatic conditions. Ammonia volatilization was lowered substantially (47–72%), when slurry was injected compared with surface application. In 1993 the loss from surface-applied digested slurry was only 35% of total ammoniacal nitrogen (TAN), while the loss from the raw slurry was 47%. There were no significant differences in ammonia volatilization from the two slurry types in the other experiments. N losses through denitrification were low (< 2% of TAN), but there were clear differences in the losses, depending on slurry type, application method and experimental year. Injection of the slurry gave a larger N-uptake in the first cut of grass compared to the trail-hose application. In 1993 N-uptake from the digested slurry treatment gave significantly larger N-uptake compared to the raw slurry in the first cut.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
N. Villar ◽  
M. Aranguren ◽  
A. Castellón ◽  
G. Besga ◽  
A. Aizpurua

Abstract Nitrogen budgets help explain the supply pattern of N from the soil to the crop. Through budgeting, an improvement of the N fertilization strategy can be achieved. The objective of the present study, which was carried out under humid Mediterranean climate conditions, was to assess the influence of N fertilization, temperature and soil humidity on soil N dynamics during a whole oilseed rape growing cycle. A field experiment was conducted with two treatments: without N (0 N) and with application of 180 kg N ha−1(180 N). Mineralization was calculated from N balances made throughout the growing cycle, all while taking into account measured N uptake by oilseed rape and N losses by leaching and N2O emissions. Nitrogen net mineralization was negative after fertilization, reaching –6.73 kg N ha−1, day−1, but total net mineralization over the year was similar for the 0 N and 180 N treatments (21 and 8 kg N ha−1, respectively). Temperatures over 5 °C were sufficient for initiating the mineralization processes. In the summer, when the soil water content was below the wilting point, immobilization took place; however, there is a risk of N leaching if rainfall occurs thereafter, mainly in the 180 N treatment.


2021 ◽  
Vol 13 (10) ◽  
pp. 5649
Author(s):  
Giovani Preza-Fontes ◽  
Junming Wang ◽  
Muhammad Umar ◽  
Meilan Qi ◽  
Kamaljit Banger ◽  
...  

Freshwater nitrogen (N) pollution is a significant sustainability concern in agriculture. In the U.S. Midwest, large precipitation events during winter and spring are a major driver of N losses. Uncertainty about the fate of applied N early in the growing season can prompt farmers to make additional N applications, increasing the risk of environmental N losses. New tools are needed to provide real-time estimates of soil inorganic N status for corn (Zea mays L.) production, especially considering projected increases in precipitation and N losses due to climate change. In this study, we describe the initial stages of developing an online tool for tracking soil N, which included, (i) implementing a network of field trials to monitor changes in soil N concentration during the winter and early growing season, (ii) calibrating and validating a process-based model for soil and crop N cycling, and (iii) developing a user-friendly and publicly available online decision support tool that could potentially assist N fertilizer management. The online tool can estimate real-time soil N availability by simulating corn growth, crop N uptake, soil organic matter mineralization, and N losses from assimilated soil data (from USDA gSSURGO soil database), hourly weather data (from National Weather Service Real-Time Mesoscale Analysis), and user-entered crop management information that is readily available for farmers. The assimilated data have a resolution of 2.5 km. Given limitations in prediction accuracy, however, we acknowledge that further work is needed to improve model performance, which is also critical for enabling adoption by potential users, such as agricultural producers, fertilizer industry, and researchers. We discuss the strengths and limitations of attempting to provide rapid and cost-effective estimates of soil N availability to support in-season N management decisions, specifically related to the need for supplemental N application. If barriers to adoption are overcome to facilitate broader use by farmers, such tools could balance the need for ensuring sufficient soil N supply while decreasing the risk of N losses, and helping increase N use efficiency, reduce pollution, and increase profits.


2018 ◽  
Vol 15 (9) ◽  
pp. 2891-2907 ◽  
Author(s):  
Kateri R. Salk ◽  
George S. Bullerjahn ◽  
Robert Michael L. McKay ◽  
Justin D. Chaffin ◽  
Nathaniel E. Ostrom

Abstract. Recent global water quality crises point to an urgent need for greater understanding of cyanobacterial harmful algal blooms (cHABs) and their drivers. Nearshore areas of Lake Erie such as Sandusky Bay may become seasonally limited by nitrogen (N) and are characterized by distinct cHAB compositions (i.e., Planktothrix over Microcystis). This study investigated phytoplankton N uptake pathways, determined drivers of N depletion, and characterized the N budget in Sandusky Bay. Nitrate (NO3-) and ammonium (NH4+) uptake, N fixation, and N removal processes were quantified by stable isotopic approaches. Dissimilatory N reduction was a relatively modest N sink, with denitrification, anammox, and N2O production accounting for 84, 14, and 2 % of sediment N removal, respectively. Phytoplankton assimilation was the dominant N uptake mechanism, and NO3- uptake rates were higher than NH4+ uptake rates. Riverine N loading was sometimes insufficient to meet assimilatory and dissimilatory demands, but N fixation alleviated this deficit. N fixation made up 23.7–85.4 % of total phytoplankton N acquisition and indirectly supports Planktothrix blooms. However, N fixation rates were surprisingly uncorrelated with NO3- or NH4+ concentrations. Owing to temporal separation in sources and sinks of N to Lake Erie, Sandusky Bay oscillates between a conduit and a filter of downstream N loading to Lake Erie, delivering extensively recycled forms of N during periods of low export. Drowned river mouths such as Sandusky Bay are mediators of downstream N loading, but climate-change-induced increases in precipitation and N loading will likely intensify N export from these systems.


2016 ◽  
Vol 78 (6-12) ◽  
Author(s):  
Saima Kalsoom Babar ◽  
Mohd Khanif Yusop ◽  
Shakeel Ahmed Babar ◽  
Aijaz Ali Khooharo

Nitrogen (N) losses from agricultural fields are commonly observed particularly from urea. The rate of urea hydrolysis is accelerated as it remains in conventional form and about 70% of applied urea losses in different forms to atmosphere. Ammonia volatilization is persuasive loss among all the losses from urea. Therefore to minimize ammonia (NH3) volatilization the micronutrient coated urea is applied to enhance N-efficiency and its uptake. This study is an application of micronutrient coated urea with zinc (Zn) and copper (Cu) for two soil series of Malaysia. A laboratory experiment was designed according to the force draft technique for trapping the NH3 loss. The results have manifested that the rate of ammonia volatilization was 16% from uncoated urea and 8% from coated urea with micronutrients during the first two weeks of observations. After the six weeks of observations it was perceived that the ammonia losses for both soil series were gradually decreased with time. The mean comparison by using Tukey’s range test has shown the positive effect of micronutrient coated urea in comparison with the conventional urea. However the urea coated with the combination of both micronutrients Cu and Zn has shown significant difference in contrast to the coating urea with single micronutrient. The overall results revealed the efficacy of micronutrient coated urea on both of the soil series to maximize N-uptake and reduce NH3 volatilization.


2016 ◽  
Author(s):  
Lénaïc Pardon ◽  
Cécile Bessou ◽  
Nathalie Saint-Geours ◽  
Benoît Gabrielle ◽  
Ni’matul Khasanah ◽  
...  

Abstract. Oil palm is the most rapidly expanding tropical perennial crop. Its cultivation raises environmental concerns, notably related to the use of nitrogen (N) fertilisers and associated pollution and greenhouse gas emissions. While numerous and diverse models exist to estimate N losses from agriculture, very few are available for tropical perennial crops. Moreover, there has been no critical analysis of the performances of existing models in the specific context of tropical perennial cropping systems. We assessed the capacity of 11 models and 29 sub-models to estimate N losses in a typical oil palm plantation over a 25-year-growth cycle, through leaching and runoff, and emissions of NH3, N2, N2O, and NOx. Estimates of total N losses were very variable, ranging from 21 to 139 kg N ha−1 yr−1. On average, 31 % of the losses occurred during the first three years of the cycle. Leaching comprised about 80 % of the losses. Based on a comprehensive Morris sensitivity analysis, the most influential variables were soil clay content, rooting depth and oil palm N uptake. We also compared model estimates with published field measurements. Many challenges remain to model more accurately processes related to the peculiarities of perennial tropical crop systems such as oil palm.


Soil Research ◽  
2019 ◽  
Vol 57 (8) ◽  
pp. 845
Author(s):  
Lee J. Kearney ◽  
Emma Dutilloy ◽  
Terry J. Rose

Legumes including soybeans (Glycine max L.) can provide substantial nitrogen (N) inputs into cropping systems when grown as a part of a rotation. However, in the wet subtropics where land is fallowed for 4–6 months after soybean crops before planting of sugarcane (Saccharum L. spp. hybrids), climatic conditions over winter can be conducive to rapid mineralisation of N from residues with consequent N losses through nitrate leaching or denitrification processes. Using 15N natural abundance methodology, we estimated N2 fixation in 12 summer-grown soybean crops in the Australian wet subtropics, and tracked the fate of soybean residue-N from brown manure crops (residue from plants at late pod-filling left on the soil surface) using 15N-labelled residue in three of these fields over the winter fallow period. Disregarding two poor crops, N2 fixation ranged from 100–290 kg N ha–1 in shoots at mid pod-filling, equating to 170–468 kg N ha–1 including estimated root N contributions. Following the winter fallow, 61 and 68% of soybean residue-N was recovered in clay and peat soils respectively, to 0.9 m depth at one location (Coraki) but only 55% of residue-N could be accounted for to 0.9 m depth in a sandy soil at another location (Ballina). In addition, around 20% of the recovered 15N at this site was located at 0.3–0.6 m depth in the soil profile. Our results indicate that substantial loss of soybean residue-N can occur during winter fallows in the wet subtropics, suggesting that winter cover crops may be necessary to retain N in fields and minimise losses to the environment.


Agronomy ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 113 ◽  
Author(s):  
Mariangela Diacono ◽  
Paola Baldivieso-Freitas ◽  
Francisco Sans Serra

Optimization of the nitrogen (N) inputs and minimization of nutrient losses strongly affect yields in crop rotations. The aim of this research was to evaluate the effect of agricultural practices on yield and N use in a 4-year cereal-legume rotation in organic farming and to identify the best combination of these practices. The following treatments were compared: conventional plough (P) vs. reduced chisel (RC) tillage; composted farmyard manure (F) vs. unfertilized control (NF); and green manure (GM) vs. no green manure (NoM). No significant differences were found for N use efficiency between P and RC in each crop. The results suggested that legumes in the tested rotation do not need supplemental N fertilization, particularly if combining GM and F. The use of composted farmyard manure should be considered in a long-term fertilization plan for cereals, to allow a higher efficiency in N use. The residual effect of fertilization over time, along with the site-specific pedo-climatic conditions, should also be considered. In both tested tillage approaches, soil N surplus was the highest in plots combining GM and F (i.e., more than 680 kg N ha−1 in combination with RC vs. about 140 kg N ha−1 for RC without fertilization), with a risk of N losses by leaching. The N deficit in NoM–NF both combined with P and RC would indicate that these treatment combinations are not sustainable for the utilized crops in the field experiment. Therefore, the combination of the tested practices should be carefully assessed to sustain soil fertility and crop production.


2012 ◽  
Vol 92 (3) ◽  
pp. 563-575 ◽  
Author(s):  
R. D. Hangs ◽  
J. J. Schoenau ◽  
K. C. J. Van Rees ◽  
J. D. Knight

Hangs, R. D., Schoenau, J. J., Van Rees, K. C. J. and Knight, J. D. 2012. The effect of irrigation on nitrogen uptake and use efficiency of two willow ( Salix spp.) biomass energy varieties. Can. J. Plant Sci. 92: 563–575. Nitrogen (N) fertilizers historically have been applied to support increased productivity of purpose-grown willow (Salix spp.) biomass energy plantations. However, a frequently observed lack of willow growth response to added fertilizer N is often attributed to poor fertilizer use efficiency. The objective of this study was to determine the effect of irrigation on the recovery of broadcast15N-labelled fertilizer, applied during the final year of a 3-yr rotation, by two willow varieties. A split-split-plot experiment was established on a fertile heavy clay soil in Saskatoon, SK, Canada, which consisted of two willow varieties (Charlie and SV1), three irrigation treatments (no irrigation, 75%, and 100% field capacity), and two fertilization treatments (1× and 2× the recommended fertilizer rate of 100:30:80:20 N:P:K:S; kg ha−1). Irrigation increased fertilizer N uptake by Charlie, but had no effect on the amount taken up by SV1, which was attributed to greater N use efficiency of SV1 compared with Charlie when irrigated. Eighty-two percent of the applied fertilizer N was accounted for in the following sinks: 43% in the soil (0–60 cm), 31% in the willow tissues (i.e., stems, leaves, stump, and roots), 7% in the LFH layer, and <1% in the non-crop vegetation; the balance (approximately 18%) was presumed lost primarily through denitrification from the poorly drained soil, but possibly some may have leached below the root zone as well. Although the willow varieties accessed only a portion of the applied fertilizer N during the year of application, the majority of the residual fertilizer N was conserved within the production system and, therefore, remained available for willow uptake in subsequent years.


Sign in / Sign up

Export Citation Format

Share Document