Effects of application technique and anaerobic digestion on gaseous nitrogen loss from animal slurry applied to ryegrass (Lolium perenne)

1996 ◽  
Vol 126 (4) ◽  
pp. 481-492 ◽  
Author(s):  
G. H. Rubæk ◽  
K. Henriksen ◽  
J. Petersen ◽  
B. Rasmussen ◽  
S. G. Sommer

SUMMARYAmmonia volatilization and denitrification were measured in a ryegrass field in Denmark after direct injection and application with trail hoses of an untreated cattle slurry and an anaerobically digested slurry in late May-early June 1993 and 1994. Ammonia volatilization was measured using a windtunnel system for a period of 8 days after slurry application. Denitrification was measured for a period of 21 days after slurry application. In an adjacent field experiment, nitrogen-uptake (N-uptake) was determined in the first two cuts of the ryegrass harvested after slurry application. N losses through ammonia volatilization were larger in 1993 than in 1994 due to differences in climatic conditions. Ammonia volatilization was lowered substantially (47–72%), when slurry was injected compared with surface application. In 1993 the loss from surface-applied digested slurry was only 35% of total ammoniacal nitrogen (TAN), while the loss from the raw slurry was 47%. There were no significant differences in ammonia volatilization from the two slurry types in the other experiments. N losses through denitrification were low (< 2% of TAN), but there were clear differences in the losses, depending on slurry type, application method and experimental year. Injection of the slurry gave a larger N-uptake in the first cut of grass compared to the trail-hose application. In 1993 N-uptake from the digested slurry treatment gave significantly larger N-uptake compared to the raw slurry in the first cut.

2016 ◽  
Vol 78 (6-12) ◽  
Author(s):  
Saima Kalsoom Babar ◽  
Mohd Khanif Yusop ◽  
Shakeel Ahmed Babar ◽  
Aijaz Ali Khooharo

Nitrogen (N) losses from agricultural fields are commonly observed particularly from urea. The rate of urea hydrolysis is accelerated as it remains in conventional form and about 70% of applied urea losses in different forms to atmosphere. Ammonia volatilization is persuasive loss among all the losses from urea. Therefore to minimize ammonia (NH3) volatilization the micronutrient coated urea is applied to enhance N-efficiency and its uptake. This study is an application of micronutrient coated urea with zinc (Zn) and copper (Cu) for two soil series of Malaysia. A laboratory experiment was designed according to the force draft technique for trapping the NH3 loss. The results have manifested that the rate of ammonia volatilization was 16% from uncoated urea and 8% from coated urea with micronutrients during the first two weeks of observations. After the six weeks of observations it was perceived that the ammonia losses for both soil series were gradually decreased with time. The mean comparison by using Tukey’s range test has shown the positive effect of micronutrient coated urea in comparison with the conventional urea. However the urea coated with the combination of both micronutrients Cu and Zn has shown significant difference in contrast to the coating urea with single micronutrient. The overall results revealed the efficacy of micronutrient coated urea on both of the soil series to maximize N-uptake and reduce NH3 volatilization.


1999 ◽  
Vol 79 (1) ◽  
pp. 57-64 ◽  
Author(s):  
M. K. Abbasi ◽  
W. A. Adams

Decreases in herbage production and of N uptake and utilization have been observed on Denbigh series soils in mid-Wales after several years in permanent pasture. Laboratory experiments were conducted to examine the contribution of denitrification to N loss from these wet grassland soils. Denitrification capacity was measured in seived soil following the addition of KNO3 and maintained at 20°C under anoxic conditions. Emission of N2O was measured from intact field cores equilibrated under conditions of simulated "field capacity" using glucose as C substrate. The rate of loss of NO3−–N decreased with depth and in the 0–2.5 cm layer all added NO3−–N was lost in 10 d incubation. Net mineralization of NH4+–N occurred at about one-sixth of the rate of NO3−–N disappearance. The presence of NO3− reduced the rate of decrease in redox potential (Eh) and the Eh did not fall below about +200 mV until all NO3−–N had been lost. Emission of N2O was greatest between 6 and 48 h and denitrification rate decreased with depth. Addition of glucose increased N2O emission in the 2.5–5.7 cm layers indicating that C limitation to denitrification may occur at shallow depths in the soil profile of compacted grassland. On average, the total denitrification ranged between 15 and 20 kg N ha−1, equivalent to 20–30% of applied N. The potential rates of denitrification change markedly over quite shallow depths in these compacted grassland soils. Furthermore, since denitrification occurred at substantial rates under simulated field capacity, conditions conducive to denitrification are likely to persist for quite long periods in the moist climatic conditions. Key words: Compacted soil, denitrification, glucose, grassland, nitrous oxide


1994 ◽  
Vol 45 (7) ◽  
pp. 1577 ◽  
Author(s):  
LS Chapman ◽  
MBC Haysom ◽  
PG Saffigna

Trash conservation measures associated with burnt and green harvested cane, and minimum tillage, are being adopted by canegrowers. These new management systems pose questions about how to apply N fertilizers. Experiments were conducted to evaluate the efficiency of fertilizer N uptake by the crop. Urea, labelled with 15N , was either broadcast or buried in three trash management systems: with and without trash after harvesting cane burnt, and with trash after harvesting cane green. The proportion of applied fertilizer-N recovered in a cane crop was 33% when labelled urea was buried, and 18% when broadcast. The presence of trash mulches from burnt or green harvested cane had negligible effects on the uptake of fertilizer-N. Of fertilizer-N applied, 25% was detected in soil 12 months after application, and there was no difference between burying and broadcasting urea. The fate of the lost fertilizer-N was not determined. Leaching did not appear to be a significant loss process in this gleyed podzolic soil, but ammonia volatilization probably occurred when urea was broadcast and it is suspected that denitrification accounted for the majority of the fertilizer-N losses.


1994 ◽  
Vol 42 (4) ◽  
pp. 293-309 ◽  
Author(s):  
D.W. Bussink ◽  
J.F.M. Huijsmans ◽  
J.J.M.H. Ketelaars

The reduction in NH3 loss from HNO3 treated cattle slurry, surface applied to grassland, was measured on different soil types throughout the Netherlands from 1989 to 1992. Thirteen micro-meteorological mass balance and 10 small wind tunnel experiments were carried out. Amounts varying between 7-17 and 10-30 m-3 ha-1 were applied, resp. and measurements were performed for 4 and 10 days, resp. The pH of treated slurry ranged from 3.9 to 6.6. A mean total of 60% (range: 29-98%) of the NH4-N from untreated slurry was volatilized in the mass balance experiments. A reduction in NH3 volatilization of 85, 72 and 55% was achieved for acidified slurry with a respective pH of c. 4.5, 5.0 and 6.0. Approx 55% (range: 7-91%) of the total loss from acidified slurry was measured on the day of application. A mean total of 66% (range: 21-90%) of NH4-N from untreated slurry volatilized in the tunnel experiments. The reduction in NH3 volatilization was 73% for slurry with pH 4.5. Approx 27% (range: 6-91%) of the total loss from acidified slurry was measured on the first day. The smaller reduction and the different pattern in NH3 volatilization observed in the wind tunnel experiments might be the consequence of different climatic conditions in and outside the tunnels or they might be related to the higher rates of slurry application in these experiments. Regression analysis indicated that high temperature, slurry pH, potential water evaporation and NH4+ concn stimulated NH3 loss in the mass balance experiments (Rsuperscript 2 = 87%). It is suggested that the results obtained with acidified slurry were independent of the grassland soil type at the application levels employed.


2021 ◽  
Author(s):  
Norah Efosa ◽  
Hans-Martin Krause ◽  
Christoph Häni ◽  
Johan Six ◽  
Else Bünemann

&lt;p&gt;The recycling of organic waste in biogas plants is proposed as a measure to close nutrient cycles and possibly reduce nitrogen losses such as nitrous oxide emissions and nitrate leaching. Ammonia volatilization after fertilizer spreading is yet another nitrogen loss pathway which is often understudied and not yet fully understood but the knowledge is needed in order to optimize fertilizer management. We therefore aimed to quantify the volatilization of ammonia after the trail-hose application of digestates compared to cattle slurry. We hypothesize that digestates have larger and longer lasting nitrogen losses via ammonia volatilization due to higher NH&lt;sub&gt;4&lt;/sub&gt;&lt;sup&gt;+&lt;/sup&gt; contents and pH values compared to fresh manure. In this project, digested and un-digested organic fertilizers were applied twice per year in a 2.5-years field experiment with three consecutive arable crops (maize, winter wheat and winter barley) under organic farming. We used Automated Low Cost Impinger Systems to measure ammonia emissions after fertilizer application. The emissions were then modeled using the backwards Langrangian stochastic dispersal model with respect to wind conditions. A preliminary presentation of the data indicates that ammonia emissions from the cattle slurry, slurry-based digestate, and industrial digestate are alternately higher or lower. In 2018, emissions from cattle slurry tended to be lower than those from slurry-based digestate and industrial digestate, while in 2019 and 2020 all three liquid organic fertilizers had similar emissions. In the measurement period after the second fertilizer application in 2018, which took place at the end of May, conspicuously high emissions were measured. This can be explained by the high temperatures during this period. Adaptive strategies in fertilizer management should thus consider reduced inputs of organic fertilizers &amp;#160;during warm periods.&lt;/p&gt;


Revista CERES ◽  
2017 ◽  
Vol 64 (3) ◽  
pp. 307-314 ◽  
Author(s):  
Luiz Paulo Rauber ◽  
Andréia Patrícia Andrade ◽  
Walter Santos Borges Júnior ◽  
Álvaro Luiz Mafra ◽  
Ariane Andreola ◽  
...  

ABSTRACT The injection of nitrogen sources into the soil and use of nitrification inhibitor can improve the efficiency of applied nitrogen and minimize losses to the environment. The objective of this study was to evaluate the effect of swine slurry (SS) and urea in two modes of application in the soil (injected and surface), and the use of nitrification inhibitor on NH3 volatilization in a controlled environment, upon varying soil texture and soil pH conditions. The experiment was conducted under controlled conditions, or a Rhodic Kandiudox and Typic Hapludult soil in a completely randomized design in a 4 x 2 x 2 x 2 factorial design with three replications. The study evaluated four fertilizers (urea, SS, SS +nitrification inhibitor (dicyandiamide-DCD) and control), two pH conditions (natural and limed) and two forms of fertilizer application (injected and surface), and two soils. The SS rate used was 21 m3 ha-1, and the rate of the inhibitor was 10 kg ha-1. The evaluations consisted in daily accumulated ammonia volatilization up to 14 days, and the percentage of soil nitrogen loss. The injection of fertilizers reduced emissions of ammonia in both soils and, limed soil had higher N losses by volatilization. The inhibitor did not increase the emission of ammonia in both soils.


2008 ◽  
Vol 19 (4) ◽  
pp. 327 ◽  
Author(s):  
J. UUSI-KÄMPPÄ ◽  
P.K. MATTILA

As the livestock numbers on Finnish dairy farms have increased and most fields on dairy farms are under grass, it has become common to spread cattle slurry over grasslands. To estimate environmental effects of recurrent slurry applications, a 5-year field study was performed to compare nitrogen (N) losses to water and ammonia losses to air by volatilization, when cattle slurry was either surface broadcast or injected into clay soil after grass cuttings. Slurry was spread on the grass in summer (1996–1997) or both in summer and autumn (1998–2000). Biomass N uptake before grass harvesting and amount of soil mineral N in spring and autumn were measured and field N balances were calculated. Despite cool weather, up to one third of the ammonium N of broadcast slurries was lost through ammonia volatilization after application in autumn, but injection effectively prevented losses. The mean surface runoff losses of total N were negligible (0.3–4.6 kg ha-1 yr-1) with the highest loss of 13 kg ha-1 yr-1 measured after slurry broadcasting to wet soil in autumn and followed with heavy rains. A substantial part (24–55%) of the applied mineral N was not recovered by the foregoing measurements.;


2021 ◽  
Vol 13 (10) ◽  
pp. 5649
Author(s):  
Giovani Preza-Fontes ◽  
Junming Wang ◽  
Muhammad Umar ◽  
Meilan Qi ◽  
Kamaljit Banger ◽  
...  

Freshwater nitrogen (N) pollution is a significant sustainability concern in agriculture. In the U.S. Midwest, large precipitation events during winter and spring are a major driver of N losses. Uncertainty about the fate of applied N early in the growing season can prompt farmers to make additional N applications, increasing the risk of environmental N losses. New tools are needed to provide real-time estimates of soil inorganic N status for corn (Zea mays L.) production, especially considering projected increases in precipitation and N losses due to climate change. In this study, we describe the initial stages of developing an online tool for tracking soil N, which included, (i) implementing a network of field trials to monitor changes in soil N concentration during the winter and early growing season, (ii) calibrating and validating a process-based model for soil and crop N cycling, and (iii) developing a user-friendly and publicly available online decision support tool that could potentially assist N fertilizer management. The online tool can estimate real-time soil N availability by simulating corn growth, crop N uptake, soil organic matter mineralization, and N losses from assimilated soil data (from USDA gSSURGO soil database), hourly weather data (from National Weather Service Real-Time Mesoscale Analysis), and user-entered crop management information that is readily available for farmers. The assimilated data have a resolution of 2.5 km. Given limitations in prediction accuracy, however, we acknowledge that further work is needed to improve model performance, which is also critical for enabling adoption by potential users, such as agricultural producers, fertilizer industry, and researchers. We discuss the strengths and limitations of attempting to provide rapid and cost-effective estimates of soil N availability to support in-season N management decisions, specifically related to the need for supplemental N application. If barriers to adoption are overcome to facilitate broader use by farmers, such tools could balance the need for ensuring sufficient soil N supply while decreasing the risk of N losses, and helping increase N use efficiency, reduce pollution, and increase profits.


2021 ◽  
Vol 13 (12) ◽  
pp. 6880
Author(s):  
Mohammad Amdadul Haque ◽  
Siti Zaharah Sakimin ◽  
Phebe Ding ◽  
Noraini Md. Jaafar ◽  
Mohd Khanif Yusop ◽  
...  

In agricultural production, nitrogen loss leads to economic loss and is a high environmental risk affecting plant growth, yield, and quality. Use of the N fertilizer with a urease inhibitor is thus necessary to minimize N losses and increase the efficiency of N. This study aimed to evaluate the effects of N-(n-butyl) Thiophosphoric Triamide (NBPT) on the growth, yield, and quality of pineapple. The experiment involved two foliar fertilizer treatments: 1% (w/v) urea solution with NBPT (2.25 mL kg−1 urea) was treated as NLU (NBPT Liquid Urea), and the same concentration of urea without NBPT served as the control. Both were applied 12 times, starting 1 month after planting (MAP) and continuing once a month for 12 months. The application of urea with NBPT notably increased the above-ground dry biomass per plant (20% and 10% at 8 and 12 MAP, respectively), leaf area per plant (23% and 15% at 8 and 12 MAP, respectively), N accumulation per plant (10%), PFPN (Partial Factor Productivity) (13%), and average fruit weight (15%) compared to the treatment with urea alone (control). The analysis of quality parameters indicated that urea with NBPT improves TSS (Total Soluble Solids) (19%), ascorbic acid (10%), and sucrose (14%) but reduces the total organic acid content (21%) in pineapple. When using urea with a urease inhibitor (NBPT), there was a significant improvement in growth, yield, quality, and nitrogen use efficiency, with the additional benefit of reduced nitrogen losses, in combination with easy handling. Hence, urea with a urease inhibitor can be used as a viable alternative for increasing pineapple yield by boosting growth with better fruit quality.


Sign in / Sign up

Export Citation Format

Share Document