scholarly journals CXCL-13 Regulates Resistance to 5-Fluorouracil in Colorectal Cancer

2020 ◽  
Vol 52 (2) ◽  
pp. 622-633
Author(s):  
Guolin Zhang ◽  
Xin Luo ◽  
Wei Zhang ◽  
Engeng Chen ◽  
Jianbin Xu ◽  
...  

Purpose5-Fluorouracil (5-Fu) is used as a conventional chemotherapy drug in chemotherapy for patients with advanced colorectal cancer, but many patients still suffer from treatment failure due to 5-Fu resistance. Emerging observations revealed the important role of chemokine (C-X-C motif) ligand 13 (CXCL-13) in tumor microenvironment and its relationship with prognosis in patients with colorectal cancer. This study is designed to reveal the important role of CXCL-13 in causing colorectal cancer resistance to 5-Fu.Materials and MethodsCXCL-13 levels of patient's serum or cell culture supernatants were measured separately by enzyme-linked immunosorbent assay. In cell assays, cell viability is detected by Cell Counting Kit-8. Therefore, the recombinant human CXCL-13 was used to simulate its high expression in cells while its antibody and siRNA were used to reduce CXCL-13 expression in cells.ResultsIn this study, we demonstrated that CXCL-13 is associated with 5-Fu resistance by culture medium exchange experiments and cytokine arrays of colorectal cancer resistant and nonresistant cells. Clinical studies showed that CXCL-13 is highly expressed in the serum of 5-Fu–resistant patients. High levels of serum CXCL-13 also predict a worse clinical outcome. The addition of recombinant CXCL-13 cytokine resulted in 5-Fu resistance, while its antibody overcame 5-Fu resistance, and knockdown of CXCL-13 expression by siRNA also reduced 5-Fu resistance, which can be saved by added recombination CXCL-13.ConclusionThese results not only identify a CXCL-13 mediated 5-Fu resistance mechanism but also provide a novel target for 5-Fu–resistant colorectal cancer in prevention and treatment strategies.

BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Caihong Wen ◽  
Xiaoqing Feng ◽  
Honggang Yuan ◽  
Yong Gong ◽  
Guangsheng Wang

Abstract Background Circular RNAs (circRNAs) feature prominently in tumor progression. However, the biological function and molecular mechanism of circ_0003266 in colorectal cancer (CRC) require further investigation. Methods Circ_0003266 expression in 46 pairs CRC tissues / adjacent tissues, and CRC cell lines was detected by quantitative real-time polymerase chain reaction (qRT-PCR); after circ_0003266 was overexpressed or knocked down in CRC cells, cell proliferation, apoptosis, migration, and invasion were evaluated by the cell counting kit-8 (CCK-8), flow cytometry, and Transwell assays, respectively; the interaction among circ_0003266, miR-503-5p, and programmed cell death 4 (PDCD4) was confirmed using bioinformatics analysis and dual-luciferase reporter assay; PDCD4 protein expression in CRC cells was quantified using Western blot. Results Circ_0003266 was significantly lowly expressed in CRC tissues and cell lines. Circ_0003266 overexpression markedly repressed CRC cell proliferation, migration, and invasion, and accelerated the cell apoptosis, but its overexpression promoted the malignant phenotypes of CRC cells. PDCD4 was a direct target of miR-503-5p and circ_0003266 promoted PDCD4 expression by competitively sponging miR-503-5p. Conclusion Circ_0003266 suppresses the CRC progression via sponging miR-503-5p and regulating PDCD4 expressions, which suggests that circ_0003266 may serve as a novel target for the treatment of CRC.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Nan Wang ◽  
Jia-Xing He ◽  
Guo-Zhan Jia ◽  
Ke Wang ◽  
Shuai Zhou ◽  
...  

Abstract Background Recent studies suggest that long noncoding RNAs (lncRNAs) play an important role in tumorigenesis. As a newly identified lncRNA, the role of XIST in colorectal cancer (CRC) has not been established. Here, we sought to characterize the role of XIST and its associated regulatory network in CRC cells. Methods Expression of XIST mRNA, miR-497-5p, and forkhead box k1 (FOXK1) in CRC cells and tissues were detected using quantitative real-time polymerase chain reaction (qRT-PCR). Proliferation and apoptosis of CRC cells were determined using the CCK-8 cell counting assay and flow cytometry. The rate of cell migration and invasion was determined using a transwell assay. The relationships between XIST, miR-497-5p, and FOXK1 were predicted and confirmed using a dual-luciferase reporter assay. Expression of FOXK1 protein was quantified by Western blot. Results XIST and FOXK1 expression were significantly upregulated in CRC tissues and cell lines, while miR-497-5p expression was downregulated. XIST knockdown significantly suppressed CRC cell proliferation, migration, and invasion. Silencing of XIST also reversed the downregulation of miR-497-5p and upregulation of FOXK1. Moreover, blocking XIST expression was shown to inhibit CRC tumor growth in vivo and the effects were antagonized by the loss of miR-497-5p. miR-497-5p was shown to act as a sponge of XIST and also targeted FOXK1 in CRC cells. Conclusions XIST was shown to promote the malignancy of CRC cells by competitively binding to miR-497-5p, resulting in an increase in FOXK1 expression. These results suggest that targeting of XIST may represent a possible treatment for CRC.


Molecules ◽  
2020 ◽  
Vol 25 (20) ◽  
pp. 4834
Author(s):  
Gülçin Tezcan ◽  
Ekaterina E. Garanina ◽  
Margarita N. Zhuravleva ◽  
Shaimaa Hamza ◽  
Albert A. Rizvanov ◽  
...  

The NALP3 inflammasome signaling contributes to inflammation within tumor tissues. This inflammation may be promoted by the vesicle trafficking of inflammasome components and cytokines. Rab5, Rab7 and Rab11 regulate vesicle trafficking. However, the role of these proteins in the regulation of inflammasomes remains largely unknown. To elucidate the role of these Rab proteins in inflammasome regulation, HCT-116, a colorectal cancer (CRC) cell line expressing pDsRed-Rab5 wild type (WT), pDsRed-Rab5 dominant-negative (DN), pDsRed-Rab7 WT, pDsRed-Rab7 DN, pDsRed-Rab11 WT and pDsRed-Rab11 DN were treated with lipopolysaccharide (LPS)/nigericin. Inflammasome activation was analyzed by measuring the mRNA expression of NLRP3, Pro-CASP1, RAB39A and Pro-IL-1β, conducting immunofluorescence imaging and western blotting of caspase-1 and analysing the secretion levels of IL-1β using enzyme-linked immunosorbent assay (ELISA). The effects of Rabs on cytokine release were evaluated using MILLIPLEX MAP Human Cytokine/Chemokine Magnetic Bead Panel-Premixed 41 Plex. The findings showed that LPS/nigericin-treated cells expressing Rab5-WT indicated increased NALP3 expression and secretion of the IL-1β as compared to Rab5-DN cells. Caspase-1 was localized in the nucleus and cytosol of Rab5-WT cells but was localized in the cytosol in Rab5-DN cells. There were no any effects of Rab7 and Rab11 expression on the regulation of inflammasomes. Our results suggest that Rab5 may be a potential target for the regulation of NALP3 in the treatment of the CRC inflammation.


2013 ◽  
Author(s):  
Robbie Carson ◽  
Basak Celtikci ◽  
Philip Dunne ◽  
Patrick Johnston ◽  
Sandra Van Schaeybroeck

2019 ◽  
Vol 39 (4) ◽  
Author(s):  
Mouli Tian ◽  
Mei Yang ◽  
Zhenjie Li ◽  
Yiru Wang ◽  
Wei Chen ◽  
...  

Abstract We aimed to investigate the anti-inflammatory role of fluoxetine, a selective serotonin reuptake inhibitor, in microglia (MG) and the mechanisms under oxygen glucose deprivation/reoxygenation (OGD/R). An OGD/R model on BV-2 cells was used for the study of microglia under ischemia/reperfusion injury in ischemic stroke. Lentiviral transfection was applied to knock down IκB-α. Enzyme-linked immunosorbent assay (ELISA) was used for detecting levels of TNF-α, IL-1β, and IL-6, and real-time PCR was used to assess the expression of IκB-α protein. Western blotting was applied to analyze NF-κB-signaling related proteins and Cell Counting Kit-8 (CCK-8) was used for assessing cell viability. Molecular docking and drug affinity responsive target stability (DARTS) assay were used for the detection of the interaction between IκB-α and fluoxetine. We found that fluoxetine decreased the levels of TNF-α, IL-1β, and IL-6 in supernatant as well as NF-κB subunits p65 and p50 in BV-2 cells under OGD/R. Fluoxetine significantly increased the level of IκB-α through the inhibition of IκB-α ubiquitylation and promoted the bonding of IκB-α and fluoxetine in BV-2 cells under OGD/R. Knocking down IκB-α attenuated the decreasing effect of TNF-α, IL-1β, and IL-6 as well as p65 and p50 in BV-2 cells under OGD/R led to by fluoxetine. In conclusion, our present study demonstrated the anti-inflammatory role of fluoxetine and its mechanisms related to the modulation of NF-κB-related signaling in MG under ischemia/reperfusion challenge.


2020 ◽  
Vol 38 (4_suppl) ◽  
pp. 174-174
Author(s):  
Jean A. Quinn ◽  
Meera Patel ◽  
Kathryn AF Pennel ◽  
Dustin Flanagan ◽  
Paul G. Horgan ◽  
...  

174 Background: Colorectal cancer (CRC) is a heterogeneous disease leading to different survival outcomes for patients with the same stage of disease. The non-canonical NF-κB pathway has been shown to have a key role in tumorigenesis, and the aim of this study was to investigate the role of IKKα, the main catalytic component of this pathway in CRC. Methods: A tissue microarray was retrospectively constructed from a patient cohort (1033) with stage I-III CRC who underwent surgery. IHC was utilised to examine cytoplasmic and punctate IKKα expression and determine any association with clincopathological features and cancer specific survival (CSS). To assess IKKα inhibition, organoids were prepared from wild type (WT) mouse colon, mouse models of CRC (Apc and Apc.KRAS.pT53.TGFbR2 (AKPT)) and patient derived human organoids. These were treated with an IKKα inhibitor, SU1433 and organoid size and cell viability assessed. Results: High cytoplasmic expression of IKKα was associated with increasing T stage (p = 0.012), poor tumour differentiation (p = 0.010), tumour necrosis (p = 0.013) and low proliferation status (p = 0.013) but was not associated with CSS. High punctate IKKα expression associated with tumour differentiation (p = 0.001), necrosis (p = 0.004), proliferation (p = 0.044) and MMR competence (p < 0.001) and was also significantly associated with reduced CSS (HR1.20 95%CI 1.02-1.42, p < 0.001). SU1433 did not significantly impact on WT (C57/B16) organoid viability up to a concentration of 1 uM, however organoid size and cell viability was significantly reduced in a dose dependent manner in organoids from both Apc and AKPT mouse models. A similar reduction was observed in patient derived human organoids. Conclusions: Punctate IKKα expression was associated with poor cancer specific survival in CRC patients, and inhibition with SU1433, impacted on CRC mouse and patient derived human organoid size and cell viability. These results suggest that, following further investigation and confirmation, IKKα may be employed as a novel therapeutic target in CRC.


2021 ◽  
Author(s):  
Jie Hua ◽  
Qingcai Meng ◽  
Chen Liang ◽  
Miaoyan Wei ◽  
Jiang Liu ◽  
...  

Abstract Background: The aim of this study was to explore the role of leucine-rich α2-glycoprotein 1 (LRG1) in the biological function and prognosis of pancreatic cancer.Methods: LRG1 was detected in serum and tissue specimens from patients with pancreatic cancer by enzyme-linked immunosorbent assay (ELISA), qRT-PCR, western blotting, and immunohistochemical (IHC) analysis. LRG1-overexpressing and LRG1-knockdown cell lines were established with lentiviral vectors containing LRG1-overexpression and shRNA plasmids, respectively. Colony formation, Cell Counting Kit-8 (CCK-8), wound healing, Transwell migration, and in vivo tumorigenicity assays were conducted to assess proliferation and migration of the pancreatic cancer cells. RNA sequencing was performed to identify potential downstream molecules of LRG1.Results: Serum LRG1 levels were significantly elevated in patients with pancreatic cancer compared with healthy controls. The mRNA and protein levels of LRG1 were higher in cancer tissues than in adjacent normal tissues. High LRG1 expression was significantly associated with shorter overall survival and found to be an independent risk factor for poor prognosis. Additionally, LRG1 dramatically promoted cell proliferation and migration in vitro and accelerated tumor growth in vivo. By RNA sequencing, we identified Deltex (DTX)-3-like E3 ubiquitin ligase (DTX3L) as a potential downstream molecule of LRG1. Further validation experiments confirmed a positive correlation between LRG1 and DTX3L.Conclusions: LRG1 is a valuable prognostic marker for pancreatic cancer that plays a crucial role in cell proliferation and migration. Targeting LRG1 or the downstream molecule DTX3L provides a novel strategy for the treatment of pancreatic cancer.


2021 ◽  
Author(s):  
Elham Kalantari ◽  
Roya Ghods ◽  
Leili Saeednejad Zanjani ◽  
Mandana Rahimi ◽  
Leila Eini ◽  
...  

Abstract Background: Oncogenic role of doublecortin-like kinase 1 (DCLK1) as a putative cancer stem cell (CSC) marker has been clarified in colorectal cancer (CRC). Isoform-specific function of DCLK1 has highlighted key role of the DCLK1-S (short isoform) in tumor maintenance, progression, and invasion. Considering the lack of commercial anti-DCLK1-S antibody suitable for immunohistochemical (IHC) application, this study was conducted to produce and validate an anti-DCLK1-S polyclonal antibody in order to specifically evaluate expression pattern and clinical significance of short isoform of DCLK1 in colorectal cancer tissues.Methods: Rabbit immunization was performed against a synthetic peptide corresponding to the published six specific amino acid sequences of DCLK1-S, and production of antibody was evaluated by enzyme-linked immunosorbent assay (ELISA). After IHC assessment of the purified anti-DCLK1-S polyclonal antibody, it was used to undertake a definitive study for determining prognostic significance of DCLK1-S expression in a well-defined tissue microarray (TMA) series including 348 CRC and 51 adjacent normal tissues with a follow-up period of 108 months. Results: Positive immunoreactivity of DCLK1-S was found in 84.2% of CRC samples. Cytoplasmic expression was the main localization of DCLK1-S compared to nuclear and membranous area of tumor cells. Expression of DCLK1-S in CRC samples was significantly higher compared to adjacent normal samples (P <0.001). A positive significant association was found between high cytoplasmic expression of DCLK1-S and advanced tumor, nodes, and metastases (TNM) stage (P<0.001) as well as the increased tumor differentiation (P= 0.02). Moreover, the patients with CRC whose tumors showed higher cytoplasmic expression of DCLK1-S had worse disease-specific survival (DSS) (log-rank test, P = 0.03) and 5-year DSS rate (P= 0.01). Additionally, the improved prognostic value was seen in the patients with CRC with high DCLK1-S expression versus moderate expression (HR: 2.70, 95% CI: 0.98-7.38; p =0.04) by multivariate analysis.Conclusions: Our findings strongly supported that DCLK1-S isoform may play a crucial role in invasion, tumor aggressive behavior, and worsened DSS of the patients with CRC. Importantly, high cytoplasmic expression of DCLK1-S compared to moderate expression could be considered as an independent prognostic factor influencing DSS. Taken together, DCLK1-S can be a candidate as a promising prognostic and targeted-therapeutic indicator for effective treatment of CRC.


2020 ◽  
Vol 16 (25) ◽  
pp. 1911-1920
Author(s):  
Feifei Chu ◽  
Yuanbo Cui ◽  
Kunkun Li ◽  
Xingguo Xiao ◽  
Li Zhang ◽  
...  

Aim: Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths worldwide. This study aimed to investigate the role of long noncoding RNA THOR in CRC. Materials & methods: The expression of THOR in 103 cases of CRC tissues and four CRC cell lines was examined by quantitative real-time PCR. Cell counting kit-8 and colony formation assays were applied to detect cell proliferation, and flow cytometry was used for testing cell cycle and apoptosis of CRC. Results: We found that THOR was highly expressed in CRC and correlated with tumor node metastasis stage, histological subtype, tumor size and differentiation and survival in CRC patients. Meanwhile, knockdown of THOR significantly suppressed cell proliferation and cell cycle of CRC, whereas promoted cell apoptosis. Conclusion: Our findings suggest that THOR is an oncogenic long noncoding RNA in CRC and a potential prognostic biomarker for this cancer.


Sign in / Sign up

Export Citation Format

Share Document