scholarly journals Regulation mechanism of miR-494-3p on endometrial receptivity in mice via PI3K/AKT/mTOR pathway

2021 ◽  
Vol 40 (05) ◽  
pp. 351-363
Author(s):  
Lan Yuan ◽  
Fen Feng ◽  
Zhu Mao ◽  
Jin-zhu Huang ◽  
Yi Liu ◽  
...  
BMC Cancer ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Chensheng Qiu ◽  
Weiliang Su ◽  
Nana Shen ◽  
Xiaoying Qi ◽  
Xiaolin Wu ◽  
...  

Abstract Background MNAT1 (menage a trois 1, MAT1), a cyclin-dependent kinase-activating kinase (CAK) complex, highly expressed in diverse cancers and was involved in cancer molecular pathogenesis. However, its deliverance profile and biological function in osteosarcoma (OS) remain unclear. Methods The expression of MNAT1 in OS was detected by western blot (WB) and immunohistochemistry (IHC). The potential relationship between MNAT1 molecular level expression and OS clinical expectations were analyzed according to tissues microarray (TMA). Proliferation potential of OS cells was evaluated in vitro based on CCK8 and OS cells colony formation assays, while OS cells transwell and in situ tissue source wound healing assays were employed to analyze the OS cells invasion and migration ability in vitro. A nude mouse xenograft model was used to detect tumor growth in vivo. In addition, ordinary bioinformatics analysis and experimental correlation verification were performed to investigate the underlying regulation mechanism of OS by MNAT1. Results In this research, we found and confirmed that MNAT1 was markedly over-expressed in OS tissue derived in situ, also, highly MNAT1 expression was closely associated with bad clinical expectations. Functional studies had shown that MNAT1 silencing could weaken the invasion, migration and proliferation of OS cells in vitro, and inhibit OS tumor growth in vivo. Mechanism study indicated that MNAT1 contributed to the progression of OS via the PI3K/Akt/mTOR pathway. We further verified that the MNAT1 was required in the regulation of OS chemo-sensitivity to cisplatin (DDP). Conclusions Taken together, the data of the present study demonstrate a novel molecular mechanism of MNAT1 involved in the formation of DDP resistance of OS cells.


2020 ◽  
Author(s):  
Jian Wu ◽  
Honghao Wang ◽  
Xia Guo ◽  
Qinzhen Cai ◽  
Tian Xiang ◽  
...  

Abstract Objectives: Immune regulation mechanism of how Helicobacter pylori urease disrupting the homeostasis of host cells remains unknown.Methods: We thus detected the effect of Helicobacter pylori UreB on macrophage PD-L1 expression with recombinant protein and defective strains. The influence of UreB induced PD-L1 on CD8+ T cells’ proliferation and perforin and granzyme expression were assessed through co-culture model. Results: Urease subset B (UreB) significantly promoted PD-L1 expression in Bone marrow-derived macrophages (BMDMs) and thus blocked the proliferation and activity of H. pylori-primed CD8+ T cells. Myosin heavy chain 9 (Myh9) works as the receptor for UreB. The interaction between UreB and Myh9 promoted amino acid anabolism, activated mTOR pathway and induced PD-L1 expression in BMDMs. mTOR inhibitor Temsirolimus reversed UreB-induced PD-L1 expression and the inhibitory effects on CD8+ T cells. Conclusion: Our study reveals a hitherto-unknown immunosuppressive mechanism of UreB during H. pylori infection, provides clues for the development of H. pylori vaccine.


2019 ◽  
Vol 234 (11) ◽  
pp. 19629-19639 ◽  
Author(s):  
Mohammad Bakhtiar Hesam Shariati ◽  
Behrooz Niknafs ◽  
Abbas Majdi Seghinsara ◽  
Naser Shokrzadeh ◽  
Mohammad Reza Alivand

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xupang Hu ◽  
Lijuan Wu ◽  
Xingyu Liu ◽  
Yi Zhang ◽  
Min Xu ◽  
...  

Cerebral ischemia-reperfusion (I-R) transiently increased autophagy by producing excessively reactive oxygen species (ROS); on the other hand, activated autophagy would remove ROS-damaged mitochondria and proteins, which led to cell survival. However, the regulation mechanism of autophagy activity during cerebral I-R is still unclear. In this study, we found that deficiency of the TRPM2 channel which is a ROS sensor significantly decreased I-R-induced neuronal damage. I-R transiently increased autophagy activity both in vitro and in vivo. More importantly, TRPM2 deficiency decreased I-R-induced neurological deficit score and infarct volume. Interestingly, our results indicated that TRPM2 deficiency could further activate AMPK rather than Beclin1 activity, suggesting that TRPM2 inhibits autophagy by regulating the AMPK/mTOR pathway in I-R. In conclusion, our study reveals that ROS-activated TRPM2 inhibits autophagy by downregulating the AMPK/mTOR pathway, which results in neuronal death induced by cerebral I-R, further supporting that TRPM2 might be a potential drug target for cerebral ischemic injury therapy.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Lan Yuan ◽  
Fen Feng ◽  
Zhu Mao ◽  
Jinzhu Huang ◽  
Yi Liu ◽  
...  

Background/Aim. Erbuzhuyu decoction (EBZYD) is a traditional Chinese medicine (TCM) formula and has been used in infertility treatment. Meanwhile, acupuncture is also used to treat female infertility. However, it is unclear whether EBZYD combined with acupuncture has better therapeutic effect. The aim of this study was to explore the effect of EBZYD combined with acupuncture and investigate its mechanism in superovulation mice. Methods. The mice received the treatment of EBZYD, acupuncture, EBZYD combined with acupuncture, or miR-494-3p agomir combined with EBZYD and acupuncture. The blastocysts’ number, endometrial microstructure, and endometrial thickness were observed, followed by the detection of endometrial receptivity-related factors, PI3K/Akt/mTOR pathway-related proteins, and miR-494-3p expression using quantitative real-time polymerase chain reaction (qRT-PCR) or western blot. Luciferase reporter assay was performed to confirm the targeting relationship between HOXA10 and miR-494-3p. Results. EBZYD combined with acupuncture treatment could increase the number of blastocysts, pinopodes, endometrial thickness, and the expression of endometrial receptivity-related factors, and the treatment effect of EBZYD combined with acupuncture was better than EBZYD or acupuncture alone. In addition, EBZYD combined with acupuncture treatment activated PI3K/Akt/mTOR pathway and inhibited the expression of miR-494-3p. HOXA10 is one of the target genes of miR-494-3p. Overexpression of miR-494-3p reversed the therapeutic effect of EBZYD combined with acupuncture and suppressed the expression of HOXA10 and the activity of PI3K/Akt/mTOR pathway. Conclusion. This study suggests that EBZYD combined with acupuncture could improve endometrial receptivity in superovulation mice via miR-494-3p/HOXA10 axis.


Author(s):  
Daniela Menichini ◽  
Gianpiero Forte ◽  
Beatrice Orrù ◽  
Giuseppe Gullo ◽  
Vittorio Unfer ◽  
...  

Abstract. Vitamin D is a secosteroid hormone that plays a pivotal role in several metabolic and reproductive pathways in humans. Increasing evidence supports the role of vitamin D deficiency in metabolic disturbances and infertility in women with polycystic ovary syndrome (PCOS). Indeed, supplementation with vitamin D seems to have a beneficial role on insulin resistance and endometrial receptivity. On the other hand, exceedingly high levels of vitamin D appear to play a detrimental role on oocytes development and embryo quality. In the current review, we summarize the available evidence about the topic, aiming to suggest the best supplementation strategy in women with PCOS or, more generally, in those with metabolic disturbances and infertility. Based on the retrieved data, vitamin D seems to have a beneficial role on IR, insulin sensitivity and endometrial receptivity, but high levels and incorrect timing of administration seem to have a detrimental role on oocytes development and embryo quality. Therefore, we encourage a low dose supplementation (400–800 IU/day) particularly in vitamin D deficient women that present metabolic disturbances like PCOS. As far as the reproductive health, we advise vitamin D supplementation in selected populations, only during specific moments of the ovarian cycle, to support the luteal phase. However, ambiguities about dosage and timing of the supplementation still emerge from the clinical studies published to date and further studies are required.


Author(s):  
Jaynthy C. ◽  
N. Premjanu ◽  
Abhinav Srivastava

Cancer is a major disease with millions of patients diagnosed each year with high mortality around the world. Various studies are still going on to study the further mechanisms and pathways of the cancer cell proliferation. Fucosylation is one of the most important oligosaccharide modifications involved in cancer and inflammation. In cancer development increased core fucosylation by FUT8 play an important role in cell proliferation. Down regulation of FUT8 expression may help cure lung cancer. Therefore the computational study based on the down regulation mechanism of FUT8 was mechanised. Sapota fruit extract, containing 4-Ogalloylchlorogenic acid was used as the inhibitor against FUT-8 as target and docking was performed using in-silico tool, Accelrys Discovery Studio. There were several conformations of the docked result, and conformation 1 showed 80% dock score between the ligand and the target. Further the amino acids of the inhibitor involved in docking were studied using another tool, Ligplot. Thus, in-silico analysis based on drug designing parameters shows that the fruit extract can be studied further using in-vitro techniques to know its pharmacokinetics.


Sign in / Sign up

Export Citation Format

Share Document