scholarly journals Effects of Erbuzhuyu Decoction Combined with Acupuncture on Endometrial Receptivity Are Associated with the Expression of miR-494-3p

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Lan Yuan ◽  
Fen Feng ◽  
Zhu Mao ◽  
Jinzhu Huang ◽  
Yi Liu ◽  
...  

Background/Aim. Erbuzhuyu decoction (EBZYD) is a traditional Chinese medicine (TCM) formula and has been used in infertility treatment. Meanwhile, acupuncture is also used to treat female infertility. However, it is unclear whether EBZYD combined with acupuncture has better therapeutic effect. The aim of this study was to explore the effect of EBZYD combined with acupuncture and investigate its mechanism in superovulation mice. Methods. The mice received the treatment of EBZYD, acupuncture, EBZYD combined with acupuncture, or miR-494-3p agomir combined with EBZYD and acupuncture. The blastocysts’ number, endometrial microstructure, and endometrial thickness were observed, followed by the detection of endometrial receptivity-related factors, PI3K/Akt/mTOR pathway-related proteins, and miR-494-3p expression using quantitative real-time polymerase chain reaction (qRT-PCR) or western blot. Luciferase reporter assay was performed to confirm the targeting relationship between HOXA10 and miR-494-3p. Results. EBZYD combined with acupuncture treatment could increase the number of blastocysts, pinopodes, endometrial thickness, and the expression of endometrial receptivity-related factors, and the treatment effect of EBZYD combined with acupuncture was better than EBZYD or acupuncture alone. In addition, EBZYD combined with acupuncture treatment activated PI3K/Akt/mTOR pathway and inhibited the expression of miR-494-3p. HOXA10 is one of the target genes of miR-494-3p. Overexpression of miR-494-3p reversed the therapeutic effect of EBZYD combined with acupuncture and suppressed the expression of HOXA10 and the activity of PI3K/Akt/mTOR pathway. Conclusion. This study suggests that EBZYD combined with acupuncture could improve endometrial receptivity in superovulation mice via miR-494-3p/HOXA10 axis.

2018 ◽  
Vol 26 (6) ◽  
pp. 839-846 ◽  
Author(s):  
Li Wang ◽  
Ya Jing Tan ◽  
Min Wang ◽  
Yi Fei Chen ◽  
Xin Yan Li

Endometrial receptivity is a critical factor for embryo implantation. A decrease in endometrial homeobox A10 (HOXA10) expression is associated with hypermethylation of its promoter and lower endometrial receptivity in animals and humans. 5-Aza-2′-deoxycytidine (AZA) is a DNA methyltransferase inhibitor. However, whether demethylation of the HOXA10 gene could increase the receptivity of the human endometrium remains unknown. Homeobox A10 promoter methylation was analyzed using bisulfite genomic sequencing polymerase chain reaction. Quantitative real time polymerase chain reaction and Western blotting were used to analyze the expression of HOXA10 and its downstream target genes (integrin subunit β 3 [ITGB3] and insulin growth factor binding protein 1 [IGFBP1]) in Ishikawa cells treated with or without AZA for 24 hours. Their protein expression was analyzed with or without HOXA10 siRNA treatment. The effect of AZA on embryo implantation was examined using a Jeg-3 spheroid-endometrial cell attachment assay. The percentage of methylated CpG islands in the HOXA10 promoter was 72.0% without AZA treatment. However, it was 38% and 35% in the 1 and 10 μM AZA treatment groups, respectively. 5-Aza-2′-deoxycytidine strongly induced the expression of HOXA10, ITGB3, and IGFBP1 messenger RNA and their protein expression. Homeobox A10 knockdown led to decreased expression of HOXA10, ITGB3, and IGFBP1, with or without AZA treatment. The attachment rate of Jeg-3 spheroids increased significantly from 82% (control) to 95% (AZA 1 μM) and 96% (AZA 10 μM) after AZA treatment. 5-Aza-2′-deoxycytidine could upregulate the expression of ITGB3 and IGFBP1 via HOXA10 upregulation, and upregulation of ITGB3 and IGFBP1 plays an important role in endometrial receptivity during implantation. 5-Aza-2′-deoxycytidine may improve endometrial receptivity by upregulating the expression of HOXA10.


2021 ◽  
Vol 11 (5) ◽  
pp. 948-956
Author(s):  
Lilin Wang ◽  
Bo Feng ◽  
Shu Zhu

Background: Congenital heart disease (CHD) is one of the most common birth defects. MicroR-NAs (miRNAs) are a group of endogenous, non-coding small RNAs and mediate the target genes expression. An increasing evidence showed that in recent years, miRNAs have given rise to more and more attention in heart protection and development. In our research, the main purpose was to determine the effect of miR-27b-3p in CHD and analyze related mechanisms. Methods: We performed qRT-PCR analysis to examine miR-27b-3p expression in myocardial tissue from 30 patients with CHD and hypoxia-induced H9C2 cells. Then, we performed biological software TargetScan to predict the relationship of miR-27b-3p and YAP1, and dual luciferase reporter gene assay was used to verify the results. H9C2 cells were transfected with inhibitor control, miR-27b-3p inhibitor, miR-27b-3p inhibitor + control-siRNA or miR-27b-3p inhibitor + YAP1-siRNA for 6 hours and then induced by hypoxia for 72 hours. Subsequently, we performed MTT and FCM analysis to detect cell viability and apoptosis. Finally, we used western blot assay to measure the expression of apoptosis-related proteins. Results: Our study indicated that miR-27b-3p expression in myocardial samples of cyanotic CHD patients was significantly higher than that of the acyanotic CHD patients. miR-27b-3p expression was gradually up-regulated with the increase of hypoxia induction time in H9C2 cells. Besides, we confirmed that YAP1 was a target gene of miR-27b-3p. Moreover, our results showed that miR-27b-3p inhibitor improved cell viability, decreased apoptosis, and affected apoptosis-related proteins expression in hypoxia induced H9C2 cells. These changes were reversed by YAP1-siRNA. All data demonstrated that miR-27b-3p/YAP1 might be new potential bio-marker and therapeutic target for CHD treatment.


Pathobiology ◽  
2021 ◽  
pp. 1-11
Author(s):  
Fei Xu ◽  
Yong-Ming Lv ◽  
Hai-Bin Wang ◽  
Ying-Chun Song

<b><i>Background:</i></b> Osteoarthritis (OA) is a common type of degenerative joint diseases that is regulated by a combination of complex intercellular signals and modulators, including non-coding RNAs. Mounting evidence suggests that miR-31-5p is physiologically involved in the regulation of chondrocytes, but the mechanism remains unclear. <b><i>Methods:</i></b> Expression levels of miR-31-5p and SOX4 in OA cartilage tissues and in IL-1β-stimulated chondrocytes were examined by quantification polymerase chain reaction (q-PCR) or immunohistochemistry assays. Cell proliferation and apoptosis were detected by Cell Counting Kit-8 (CCK-8) and flow cytometry assays, respectively. Expression of LC3 was detected using immunofluorescence staining. Expressions of autophagy-related proteins and extracellular regulated protein kinase (ERK)/mechanical target of rapamycin kinase (mTORC1) signal-related proteins were measured by Western blot analysis. Molecular interaction was validated by dual luciferase reporter assay. <b><i>Results:</i></b> Downregulation of miR-31-5p and upregulation of SOX4 were observed in both OA patients and OA chondrocytes. Mechanistic experiments revealed that miR-31-5p negatively modulated SOX4 expression by directly targeting its 3′- untranslated region. Moreover, overexpression of miR-31-5p suppressed the activation of mTORC1 in an ERK-dependent manner by inhibiting SOX4. Further functional experiments demonstrated that overexpressing miR-31-5p in OA chondrocytes markedly promoted its proliferation and autophagy while inhibiting apoptosis. However, these effects were abolished by overexpression of SOX4 or treatment with 3BDO, an mTOR activator. <b><i>Conclusion:</i></b> These results demonstrated that miR-31-5p enhanced survival and autophagy of OA chondrocytes through inactivation of mTORC1 via directly targeting SOX4, suggesting that miR-31-5p may play a protective role in OA progression.


2015 ◽  
Vol 26 (10) ◽  
pp. 1786-1796 ◽  
Author(s):  
Wei Zhao ◽  
Ping Wang ◽  
Jun Ma ◽  
Yun-Hui Liu ◽  
Zhen Li ◽  
...  

MicroRNA-34a (miR-34a) functions to regulate protein expression at the posttranscriptional level by binding the 3′ UTR of target genes and regulates functions of vascular endothelial cells. However, the role of miR-34a in regulating blood–tumor barrier (BTB) permeability remains unknown. In this study, we show that miR-34a overexpression leads to significantly increased permeability of BTB, whereas miR-34a silencing reduces the permeability of the BTB. In addition, miR-34a overexpression significantly down-regulates the expression and distribution of tight junction–related proteins in glioma endothelial cells (GECs), paralleled by protein kinase Cε (PKCε) reduction. Moreover, luciferase reporter gene analysis shows that PKCε is the target gene of miR-34a. We also show that cotransfection of miR-34a and PKCε inversely coregulates BTB permeability and protein expression levels of tight junction–related proteins. Pretreatment of ψεRACK, a PKCε-specific activator, decreases BTB permeability in miR-34a–overexpressed GECs and up-regulates expression levels of tight junction proteins. In contrast, pretreatment of εV1-2, a specific PKCε inhibitor, gives opposite results. Collectively, our findings indicate that miR-34a regulates BTB function by targeting PKCε; after phosphorylation, PKCε is activated and contributes to regulation of the expression of tight junction–related proteins, ultimately altering BTB permeability.


2020 ◽  
Vol 40 (12) ◽  
Author(s):  
Zhenyi Yu ◽  
Qiusheng Ren ◽  
Shenghui Yu ◽  
Xiang Gao

Abstract Previous studies failed to elucidate the detailed mechanisms of anesthetic preconditioning as a protective approach against ischemic/reperfusion (I/R) injury in cells. The present study mainly centered on discovering the mechanisms of Sevoflurane (Sev) in preventing cardiomyocytes against I/R injury. Human cardiomyocyte AC16 cell line was used to simulate I/R injury based on a hypoxia/reperfusion (H/R) model. After Sev treatment, cell viability and apoptosis were detected by MTT assay and flow cytometry, respectively. Lactate dehydrogenase (LDH) content was measured using an LDH Detection Kit. Relative mRNA and protein expressions of LINC01133, miR-30a-5p and apoptosis-related proteins were detected using quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot as needed. Target gene of miR-30a-5p and their potential binding sites were predicted using Starbase and confirmed by dual-luciferase reporter assay. Cell behaviors were assessed again after miR-30a-5p and LINC01133 transfection. Sev could improve cell viability, reduce LDH leakage, and down-regulate the expressions of apoptosis-related proteins (Bax, cleaved caspase-3 and cleaved caspase-9) and LINC01133 as well as up-regulate miR-30a-5p and Bcl-2 expressions in H/R cells. MiR-30a-5p was the target of LINC01133, and up-regulating miR-30a-5p enhanced the effects of Sev in H/R cells, with a suppression on H/R-induced activation of the p53 signaling pathway. However, up-regulating LINC01133 reversed the enhancing effects of miR-30a-5p on Sev pretreatment in H/R cells. Sev could protect cardiomyocytes against H/R injury through the miR-30a-5p/LINC01133 axis, which may provide a possible therapeutic method for curing cardiovascular I/R injury.


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Di Ai ◽  
Fang Yu

Abstract Background As a degenerative disease, osteoarthritis (OA) greatly affects aged population. The human chondrocyte cell line CHON-001, derived from normal human articular cartilage, has been widely used in vitro in osteoarthritis models. In order to better understand the underlying mechanism of OA pathogenesis, this study was conducted to explore the effects of LncRNA dynamin 3 opposite strand (DNM3OS) on CHON-001 cells. Methods The expression levels of and correlation between DNM3OS and miR-126 that derived from OA and non-OA tissues were determined by quantitative real time (qRT)-PCR and Spearman’s correlation analysis. Cell viability, clone, migration, invasion and apoptosis were respectively determined by cell counting kit-8, colony formation, wound healing assay, transwell and flow cytometry. The target genes were predicted by starbase V2 and targetscan 7.2 and confirmed by luciferase reporter assay. The expressions of apoptosis-related factors were detected by Western blot. Results The expression of DNM3OS was down-regulated in OA patients. Functional assays demonstrated that ectopic expression of DNM3OS promoted the proliferation and inhibited apoptosis of CHON-001 cells, and that knocking down DNM3OS suppressed cell proliferation and induced apoptosis. Mechanistic investigation revealed that DNM3OS physically bound to the promoter of miR-126 and suppressed miR-126 expression. Decreased expression of DNM3OS was negatively correlated with miR-126 in OA patients. Furthermore, the effects of siDNM3OS on inhibiting cell proliferation and promoting apoptosis were partially reversed by miR-126 inhibitor. Meanwhile, type insulin-like growth factor-1 (IGF1) was identified as a target gene for miR-126 and was negatively associated with the miR-126 expression. Overexpressed IGF1 restored the effects of miR-126 mimic in suppressing cell proliferation and promoting apoptosis. Conclusion Our results showed that DNM3OS could affect the CHON-001 cell proliferation and apoptosis by regulating IGF1 by sponging miR-126.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wei Shao ◽  
Haina Xia ◽  
Qiangfang Lan ◽  
Jialu Gu ◽  
Haidong Huang ◽  
...  

AbstractColorectal carcinoma (CRC) has a high morbidity and mortality. Current studies have confirmed a variety of microRNA polymorphisms were associated with tumor susceptibility, however, the mechanisms are still unknown. In this study, we were aimed to clarify how polymorphism rs2682818 participated in the progression of CRC. First of all, the differential expression of miR-618 was assessed by quantitative real-time polymerase chain reaction in CRC patients with different genotypes of polymorphism rs2682818, including homozygous (TT) genotype, homozygous (GG) genotype and heterozygous (TG) genotype. Secondly, plasmids carried miR-168 precursor sequences harboring rs2682818 (SNP type) or without rs2682818 (wild type) were transfected into 293T cells to verify that polymorphism rs2682818 affected miR-618 expression. Thirdly, CCK-8 assay, flow cytometry assay, transwell assay and mouse xenograft assay were performed to measure the biological functions of miR-618 in CRC. Fourthly, the candidate target genes of miR-618 which were predicted by bioinformatics tools were verified by luciferase reporter assay. Finally, in order to explain the potential molecular mechanisms, western blotting was performed to demonstrate the differential expression and phosphorylation of pathway related proteins. The results showed that miR-618 was down-regulated in colon cancer, especially in CRC patients with rs2682818 GG homozygous genotype. Higher expression of mature miR-618 occurred in patients with TT homozygous genotype, and these patients usually had a longer survival time. Moreover, miR-618 mimic obviously impaired the growth and invasion ability of CRC cells, and miR-618 mimic also remarkably promoted CRC cell apoptosis. Our luciferase experiments confirmed that TIMP1 was a target of miR-618 in CRC cells. Knockdown of TIMP1 also significantly inhibited the malignant cytological features of CRC, including malignant growth and invasion as well as apoptosis resistance. In summary, polymorphism rs2682818 participated in the progression of CRC via affecting the expression of mature miR-618 in CRC cells, and miR-618 inhibited the progression of CRC via targeting TIMP1expression.


2020 ◽  
Vol 40 (6) ◽  
Author(s):  
Hongwei Yang ◽  
Yonggang Huang ◽  
Jian He ◽  
Guangrui Chai ◽  
Yu Di ◽  
...  

Abstract It has been reported that miR-486-3p expression is decreased in retinoblastoma (RB) tumor tissues, however, its function in RB has been less reported. The present study aimed to explore the regulatory effects of miR-486-3p on RB cells. The expression of miR-486-3p in RB tissues and cells was detected by quantitative real-time polymerase chain reaction (qRT-PCR). Cell viability, proliferation, apoptosis, migration and invasion ability were determined by cell counting kit-8 (CCK-8) kit, clone formation assay, flow cytometry, scratch assay and transwell, respectively. Targetscan 7.2 and dual-luciferase reporter were used to verify target genes for miR-486-3p. The expressions of apoptosis-related proteins and ECM1 were detected by Western blot. The miR-486-3p expression was decreased in RB tissues and cells. In RB cells, overexpression of miR-486-3p inhibited cell proliferation, migration and invasion, while promoted apoptosis. Moreover, overexpression of miR-486-3p decreased Bcl-2 expression, while increased the expressions of Bax and Cleaved Caspase-3 (C caspase-3). ECM1 was the target gene of miR-486-3p, and miR-486-3p inhibited the expression of ECM1. Furthermore, ECM1 partially reversed the inhibitory effect of miR-486-3p on the proliferation, migration and invasion of RB cells. MiR-486-3p inhibited the proliferation, migration and invasion of RB by down-regulating ECM1.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Jizhe Yu ◽  
Yushuang Qin ◽  
Naxin Zhou

Abstract Background The dysregulation of circular RNAs (circRNAs) has been identified in various human diseases, including osteoarthritis (OA). The purpose of this study was to identify the role and mechanism of circ_SLC39A8 in regulating the progression of OA. Methods The expression levels of circ_SLC39A8, miR-591, and its potential target gene, interleukin-1-receptor-associated kinase 3 (IRAK3), were identified by quantitative real-time polymerase chain reaction (qRT-PCR). Cell viability and apoptosis were determined by Cell Counting Kit-8 (CCK-8) assay and flow cytometry, respectively. The relationship between miR-591 and circ_SLC39A8 or IRAK3 was predicted by bioinformatics tools and verified by dual-luciferase reporter. Results Circ_SLC39A8 and IRAK3 were upregulated and miR-591 was downregulated in OA cartilage tissues. Knockdown of circ_SLC39A8 inhibited apoptosis and inflammation in OA chondrocytes, while these effects were reversed by downregulating miR-591. Promotion cell viability effects of miR-591 were partially reversed by IRAK3 overexpression. Conclusion Our findings indicated that knockdown of circ_SLC39A8 delayed the progression of OA via modulating the miR-591-IRAK3 axis, providing new insight into the molecular mechanisms of OA pathogenesis.


2021 ◽  
Vol 104 (2) ◽  
pp. 003685042110093
Author(s):  
Mingxin Liu ◽  
Hong Wu ◽  
Yiqiang Liu ◽  
Yan Tan ◽  
Songtao Wang ◽  
...  

MiR-326 functions as an antioncogene in the several types of cancer. However, the underling mechanisms through which miRNA-326 regulates the anti-carcinogenesis of lung adenocarcinoma have remained elusive. The aim of this study was to explore the role and regulatory mechanism of miR-326 in cell proliferation, invasion, migration and apoptosis in lung adenocarcinoma. Quantitative real-time PCR (qRT-PCR) was used to detect the expression pattern of miR-326 in human bronchial epithelial cells (HBES-2B), 4 kinds of lung adenocarcinoma cell lines (H23, H1975, H2228, H2085) and 20 lung adenocarcinoma tissues. Then, H23 cells were infected with miR-326 mimics, miR-326 inhibitors and si-ZEB1 to build up-regulated miR-326 cell lines, down-regulated ZEB1(zinc-finger-enhancer binding protein 1)cell lines, simultaneous down-regulated ZEB1 and miR-326 cell lines. Moreover, CCK-8 assay, transwell invasion assay, wound healing assay and flow cytometry assay were employed to examine the effects of miR-326 and ZEB1 on the proliferation, invasion, migration and apoptosis abilities of H23 cells. Western blot was performed to explore the effects of miR-326 and ZEB1 on the expression of invasion and migration related proteins N-cadherin, E-cadherin, MMP7, MMP13, SLUG and apoptotic proteins PARP, BAX. On the mechanism, a dual-luciferase reporter gene was used to measure the target relationship between miR-326 and ZEB1. MiR-326 expression was significantly downregulated in lung adenocarcinoma tissues and cells. Overexpression of miR-326 significantly inhibited the malignant behaviors of H23 cells. Mechanically, luciferase reporter assay showed that ZEB1 was a direct target of miR-326. MiR-326 mimic downregulated the expression of ZEB1. Furthermore, knocking down ZEB1 strongly inhibited the proliferation, invasion and migration of H23 cells but promoted apoptosis. MiR-326 could target ZEB1 to inhibit the proliferation, invasion and migration of lung adenocarcinoma cells and promote apoptosis, which is a potential therapeutic target for lung adenocarcinoma.


Sign in / Sign up

Export Citation Format

Share Document