Bispecific anti-OX40/5T4 antibodies for cancer treatment

Author(s):  
Martin Perez-Santos

OX40 and 5T4 are molecules that play a role in T-cell expansion and cytoskeleton’s disruption in cancer, respectively. US2019161555 patent describes a bispecific antibody that targets OX40/5T4 with the potential application of cancer treatment. The method of analysis of the US201916155 patent consisted of claim’s analysis, as well as the chemical/biological information’s analysis of the bispecific antibody. The patent includes independent claims related to bispecific antibodies that bind to OX40/5T4, DNA encoding the antibodies, a vector that harbors the DNA, a host cell that contains the vector, a pharmaceutical composition containing a pharmaceutically effective amount of the antibodies, medical use of the antibodies, use of the antibodies in the treatment or prevention of neoplastic disorders and a method of treating neoplastic disorders. Bispecific antibodies that target OX40/5T4 can activate IL-2 secretion in CD4+ T cells.

Author(s):  
Martin Perez-Santos ◽  
Maricruz Anaya-Ruiz ◽  
Gabriela Sanchez-Esgua ◽  
Luis Villafaña-Diaz ◽  
Diana Barron-Villaverde

PD-L1 and ICOS are immune control points in cancer and their presence in cancer tends to have a poor prognosis. WO2019122882 patent describes a bispecific antibody that targets PDL-1/ICOS with the potential application of cancer treatment. WO2019122882 patent describes a bispecific antibody with antitumor efficacy in CT26 model through of the depletion of TReg cells and improved ratio of CD8+ T cells: TReg in tumor microenvironment. The anti-PDL-1/ICOS antibody is new; however, only preclinical assays are shown using colon carcinoma model. So far, there are no reports of clinical trials to evaluate the safety, toxicity and efficacy, but it will be of great interest to analyze in the future if this antibody surpasses the action of the combinatorial therapy in cancer.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2316-2316 ◽  
Author(s):  
Seung Y. Chu ◽  
Erik Pong ◽  
Hsing Chen ◽  
Sheryl Phung ◽  
Emily W. Chan ◽  
...  

Abstract CD123 (IL-3 receptor alpha) is highly expressed on acute myeloid leukemia stem cells and blasts, and represents a promising target of antibody therapies for AML. Anti-CD123 antibodies such as CSL-362 and KHK2823 are currently in clinical development; however, a limitation of these molecules is that they are unable to stimulate T cell-mediated killing of CD123+ AML cells. To exploit the potent activity inherent to T cell immunotherapy while maintaining the favorable dosing regimen of a therapeutic antibody, we have designed a novel bispecific antibody that recruits T cells to attack CD123+ AML stem and blast cells. Such antibodies act via a mechanism known as "redirected T cell-cytotoxicity" (RTCC), because they stimulate targeted T cell-mediated killing regardless of T cell antigen specificity. Unlike other bispecific formats, these antibodies possess a full Fc domain and spontaneously form stable heterodimers that are readily manufactured. Their Fc domain was also engineered to abolish binding to Fcγ receptors (to reduce the potential for nonselective T cell activation), yet preserve binding to human FcRn (to maintain long serum half-life). We first generated a library of humanized and affinity-optimized anti-CD123 × anti-CD3 bispecific antibodies and assessed their potency using RTCC assays, in which bispecifics stimulated killing by human T cells of the CD123+ AML cell lines KG-1a and TF-1. From this cell-based screen, we selected the bispecific antibody XmAb14045 for testing in animal models. This antibody has 0.1 nM affinity for human CD123, and a T cell-engaging domain with 8 nM affinity for human CD3. XmAb14045 stimulated T cell-mediated killing of KG-1a and TF-1 cells with an EC50 < 1 ng/ml (8 pM). In contrast, XmAb14045 had no cytotoxic activity against the CD123− Raji B cell line, demonstrating target specificity of the T cells. XmAb14045 had a prolonged serum half-life in mice of 6.2 days, in marked contrast to non-Fc domain-containing bispecific formats. Because this antibody was optimized for human CD123 and CD3 targets and does not crossreact with mouse antigens, we evaluated efficacy in cynomolgus monkeys. We treated 3 monkeys per group with a single dose of XmAb14045 at 0.01, 0.1, or 1 mg/kg. We quantified CD123+ cell numbers, including basophils and plasmacytoid dendritic cells (pDC) as CD123+ surrogate populations for AML stem and blast cells. Within 4 hours of dosing, XmAb14045 strongly activated T cells and stimulated depletion of over 99% of circulating CD123+ cells within 1 hr, particularly at the 0.1 and 1 mg/kg doses. Basophil and pDC counts fell to baseline within 4 hr and remained low for several weeks. Circulating CD4+ and CD8+ T cells were activated immediately after dosing and this was sustained for 48 hr, as measured by markedly increased levels of the activation markers CD25 and CD69. Notably, XmAb14045 induced rapid margination of CD4+ and CD8+ T cells from the circulation, with blood T cell populations returning to baseline within several days. Bone marrow CD123+ cells were depleted by over 95% at all doses, and these cell populations had not recovered by 8 days after treatment. Our results demonstrate that bispecific antibodies can recruit and activate T cells to efficiently kill CD123+ cells not only in the circulation but also in the bone marrow. Results in monkeys also suggest that changes in basophil and/or plasmacytoid dendritic cell numbers are readily quantifiable in peripheral blood, and thus these populations may serve as biomarkers for clinical efficacy. Our preclinical data provide a rationale for clinical assessment of anti-CD123 × anti-CD3 bispecific antibodies in patients with acute myeloid leukemia. Disclosures Chu: Xencor: Employment, Equity Ownership. Pong:Xencor, Inc.: Employment, Equity Ownership. Chen:Xencor, Inc.: Employment, Equity Ownership. Phung:Xencor, Inc.: Employment, Equity Ownership. Chan:Xencor, Inc.: Employment, Equity Ownership. Endo:Xencor, Inc.: Employment, Equity Ownership. Rashid:Xencor, Inc.: Employment, Equity Ownership. Bonzon:Xencor, Inc.: Employment, Equity Ownership. Leung:Xencor, Inc.: Employment, Equity Ownership. Muchhal:Xencor, Inc.: Employment, Equity Ownership. Moore:Xencor, Inc.: Employment, Equity Ownership. Bernett:Xencor, Inc.: Employment, Equity Ownership. Szymkowski:Xencor, Inc.: Employment, Equity Ownership. Desjarlais:Xencor, Inc.: Employment, Equity Ownership.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A625-A625
Author(s):  
Christianne Groeneveldt ◽  
Priscilla Kinderman ◽  
Diana JM van den Wollenberg ◽  
Ruben L van den Oever ◽  
Jim Middelburg ◽  
...  

BackgroundThe use of T cell-engaging CD3-bispecific antibodies (CD3-bsAbs) is a promising immunotherapeutic strategy for cancer. Although this therapy has reached clinical practice for hematological malignancies, the absence of sufficient infiltrating T cells is a major barrier for efficacy in solid tumors.1 Oncolytic viruses are emerging as anti-cancer therapeutics, and accumulating evidence demonstrates their applicability to sensitize tumors for immune checkpoint immunotherapy.2 In this study, we exploited oncolytic reovirus as a strategy to enhance the efficacy of CD3-bsAbs in immune-silent, solid tumors.MethodsThe mutant p53 and K-ras induced murine pancreatic cancer model KPC3 resembles human pancreatic ductal adenocarcinomas with a desmoplastic tumor microenvironment, low T cell density, and resistance to immunotherapy. Immune-competent mice with established, subcutaneous KPC3 tumors were intratumorally injected with an optimized regimen of oncolytic reovirus (type 3 Dearing strain) and the reovirus-induced changes in the tumor microenvironment and lymphoid organs were analyzed over time by NanoString analysis, RT-qPCR and multicolor flow cytometry. The efficacy of combination with systemically injected CD3-bsAbs was evaluated in KPC3 and B16.F10 murine tumor models and the close-to-patient HER2+ BT474 breast cancer model with cell surface-expressed TRP1 and HER2 as target antigens, respectively. Primary outcome was tumor size, measured with caliper three times a week in a blinded-manner.ResultsReplication-competent reovirus induced an early IFN-signature, followed by a strong influx of CD8+ T cells (2.6-fold increase, p=0.0092). Viral replication declined after seven days and was associated with systemic activation of lymphocytes. Tumor-infiltrating T cells were mostly reovirus-specific and served as effector cells for the subsequently systemically administered CD3-bsAbs. The combination of reovirus and CD3-bsAbs induced regressions up to 70% in all mice with large, established KPC3, B16.F10, and BT474 tumors and significantly prolonged survival. Importantly, the employment of reovirus as a pre-conditioning regimen performed significantly better than the simultaneous or preceding administration of bsAbs. This combination treatment also induced regressions of non-injected distant lesions, suggesting that this therapy might be effective for metastatic disease.Abstract 590 Figure 1Reovirus sensitizes tumors for CD3-bsAb therapyReovirus-induced interferon signaling leads to increased T cell influx and subsequent effective CD3-bispecific antibody therapy in solid tumorsConclusionsOncolytic reovirus administration represents an effective strategy to induce a local IFN response and strong T cell influx, thereby sensitizing the tumor microenvironment for subsequent CD3-bsAb therapy (figure 1). Our data advocate for the inclusion of oncolytic viruses as a pre-conditioning strategy in T cell engaging antibody trials for solid tumors. Since both CD3-bispecific antibodies and oncolytic viruses are in advanced clinical development as monotherapies, efficient translation of this combination seems feasible.AcknowledgementsThis work was financially supported by the Dutch Cancer Society Bas Mulder Award 11056 (to NvM), a PhD fellowship from Leiden University Medical Center (to CG) and the Support Casper campaign by the Dutch foundation ‘Stichting Overleven met Alvleesklierkanker’ (supportcasper.nl) project numbers SOAK 17.04 and 19.03.Ethics ApprovalAll mouse studies were approved by the institutional Animal Welfare Body of Leiden University Medical Center and carried out under project licenses AVD1160020187004 or AVD116002015271, issued by the competent authority on animal experiments in the Netherland (named CCD).ReferencesBenonisson H, Altıntaş I, Sluijter M, Verploegen S, Labrijn AF, Schuurhuis DH, Houtkamp MA, Verbeek JS, Schuurman J and van Hall T. CD3-Bispecific antibody therapy turns solid tumors into inflammatory sites but does not install protective memory. Mol Cancer Ther 2019; 18(2):312–322.Groeneveldt, C, van Hall, T, van der Burg, SH, ten Dijke, P and van Montfoort, N. Immunotherapeutic potential of TGF-β inhibition and oncolytic viruses. Trends Immunol 2020; 41(5):406–420.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. 8017-8017 ◽  
Author(s):  
Ben Buelow ◽  
Duy Pham ◽  
Starlynn Clarke ◽  
Shelley Force Aldred ◽  
Kevin Dang ◽  
...  

8017 Background: Although BCMA is a plasma cell specific surface molecule attractive as an antibody target in multiple myeloma, its scarcity on the cell surface may limit the efficacy of a conventional antibody. T-cell engaging bispecific antibody approaches are highly efficacious and are particularly well suited for a membrane target with limited expression, such as BCMA. Teneobio has developed a multivalent antibody platform based on modular human VH domains, which allowed us to build T cell engaging bispecific antibodies with low and high T cell agonistic activities. Methods: UniRats were immunized with either CD3 or BCMA antigens and antigen-specific UniAbs were identified by antibody repertoire sequencing and high-throughput gene assembly, expression, and screening. High affinity binding VH sequences were selected using recombinant proteins and cells. In vitro efficacy studies included T-cell activation by cytokine- and tumor cell kill by calcein-release assays. In vivo efficacy of the molecules was evaluated in NSG mice harboring myeloma cells and human PBMCs. Results: BCMA-specific UniAbs bound plasma cells with high affinities (100-700pM) and cross-reacted with cynomolgus plasma cells. Strong and weak T cell agonists were identified that bound human T cells with high and low affinities respectively and cross-reacted with cynomolgus T cells. T cell engaging bispecifics with a strong (H929 cytotoxicity:EC50=27pM) and a weak T cell activating arm (H929 cytotoxicity: EC50=1170pM) demonstrated T-cell activation and tumor-cell cytotoxicity in vitro; bispecifics with a weak CD3 engaging arm showed markedly reduced cytokine production even at doses saturating for cytotoxicity. In viv o, BCMAxCD3 bispecific antibodies reduced tumor load and increased survival when co-administered with human PBMCs as compared to controls. Conclusions: Our results suggest that T cell engaging bispecifics with low-affinity anti-CD3 arms could be preferred for the treatment of Multiple Myeloma.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A812-A812
Author(s):  
Pia Aehnlich ◽  
Per Thor Straten ◽  
Ana Micaela Carnaz Simoes ◽  
Signe Skadborg ◽  
Gitte Olofsson

BackgroundAdoptive cell therapy (ACT) is an approved treatment option for certain hematological cancers and has also shown success for some solid cancers. Still, benefit and eligibility do not extend to all patients. ACT with Vγ9Vδ2 T cells is a promising approach to overcome this hurdle.MethodsIn this study, we explored the effect of different cytokine conditions on the expansion of Vγ9Vδ2 T cells in vitro.ResultsWe could show that Vγ9Vδ2 T cell expansion is feasible with two different cytokine conditions: (a) 1000U/ml interleukin (IL)-2 and (b) 100U/ml IL-2+100U/ml IL-15. We did not observe differences in expansion rate or Vγ9Vδ2 T cell purity between the conditions; however, IL-2/IL-15-expanded Vγ9Vδ2 T cells displayed enhanced cytotoxicity against tumor cells, also in hypoxia. While this increase in killing capacity was not reflected in phenotype, we demonstrated that IL-2/IL-15-expanded Vγ9Vδ2 T cells harbor increased amounts of perforin, granzyme B and granulysin in a resting state and release more upon activation. IL-2/IL-15-expanded Vγ9Vδ2 T cells also showed higher levels of transcription factor T-bet, which could indicate that T-bet and cytotoxic molecule levels confer the increased cytotoxicity.ConclusionsThese results advocate the inclusion of IL-15 into ex vivo Vγ9Vδ2 T cell expansion protocols in future clinical studies.


2021 ◽  
pp. annrheumdis-2021-220435
Author(s):  
Theresa Graalmann ◽  
Katharina Borst ◽  
Himanshu Manchanda ◽  
Lea Vaas ◽  
Matthias Bruhn ◽  
...  

ObjectivesThe monoclonal anti-CD20 antibody rituximab is frequently applied in the treatment of lymphoma as well as autoimmune diseases and confers efficient depletion of recirculating B cells. Correspondingly, B cell-depleted patients barely mount de novo antibody responses during infections or vaccinations. Therefore, efficient immune responses of B cell-depleted patients largely depend on protective T cell responses.MethodsCD8+ T cell expansion was studied in rituximab-treated rheumatoid arthritis (RA) patients and B cell-deficient mice on vaccination/infection with different vaccines/pathogens.ResultsRituximab-treated RA patients vaccinated with Influvac showed reduced expansion of influenza-specific CD8+ T cells when compared with healthy controls. Moreover, B cell-deficient JHT mice infected with mouse-adapted Influenza or modified vaccinia virus Ankara showed less vigorous expansion of virus-specific CD8+ T cells than wild type mice. Of note, JHT mice do not have an intrinsic impairment of CD8+ T cell expansion, since infection with vaccinia virus induced similar T cell expansion in JHT and wild type mice. Direct type I interferon receptor signalling of B cells was necessary to induce several chemokines in B cells and to support T cell help by enhancing the expression of MHC-I.ConclusionsDepending on the stimulus, B cells can modulate CD8+ T cell responses. Thus, B cell depletion causes a deficiency of de novo antibody responses and affects the efficacy of cellular response including cytotoxic T cells. The choice of the appropriate vaccine to vaccinate B cell-depleted patients has to be re-evaluated in order to efficiently induce protective CD8+ T cell responses.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Sasan Ghaffari ◽  
Monireh Torabi-Rahvar ◽  
Sajjad Aghayan ◽  
Zahra Jabbarpour ◽  
Kobra Moradzadeh ◽  
...  

Abstract Background The successful ex vivo expansion of T-cells in great numbers is the cornerstone of adoptive cell therapy. We aimed to achieve the most optimal T-cell expansion condition by comparing the expansion of T-cells at various seeding densities, IL-2 concentrations, and bead-to-cell ratios. we first expanded the peripheral blood mononuclear cells (PBMCs) of a healthy donor at a range of 20 to 500 IU/mL IL-2 concentrations, 125 × 103 to 1.5 × 106 cell/mL, and 1:10 to 10:1 B:C (Bead-to-cell) ratios and compared the results. We then expanded the PBMC of three healthy donors using the optimized conditions and examined the growth kinetics. On day 28, CD3, CD4, and CD8 expression of the cell populations were analyzed by flow cytometry. Results T-cells of the first donor showed greater expansion results in IL-2 concentrations higher than 50 IU/mL compared to 20 IU/mL (P = 0.02). A seeding density of 250 × 103 cell/mL was superior to higher or lower densities in expanding T-cells (P = 0.025). Also, we witnessed a direct correlation between the B:C ratio and T-cell expansion, in which, in 5:1 and 10:1 B:C ratios T-cell significantly expanded more than lower B:C ratios. The results of PBMC expansions of three healthy donors were similar in growth kinetics. In the optimized condition, 96–98% of the lymphocyte population expressed CD3. While the majority of these cells expressed CD8, the mean expression of CD4 in the donors was 19.3, 16.5, and 20.4%. Conclusions Our methodology demonstrates an optimized culture condition for the production of large quantities of polyclonal T-cells, which could be useful for future clinical and research studies.


2021 ◽  
Vol 6 (59) ◽  
pp. eabh1516
Author(s):  
Marion Moreews ◽  
Kenz Le Gouge ◽  
Samira Khaldi-Plassart ◽  
Rémi Pescarmona ◽  
Anne-Laure Mathieu ◽  
...  

Multiple Inflammatory Syndrome in Children (MIS-C) is a delayed and severe complication of SARS-CoV-2 infection that strikes previously healthy children. As MIS-C combines clinical features of Kawasaki disease and Toxic Shock Syndrome (TSS), we aimed to compare the immunological profile of pediatric patients with these different conditions. We analyzed blood cytokine expression, and the T cell repertoire and phenotype in 36 MIS-C cases, which were compared to 16 KD, 58 TSS, and 42 COVID-19 cases. We observed an increase of serum inflammatory cytokines (IL-6, IL-10, IL-18, TNF-α, IFNγ, CD25s, MCP1, IL-1RA) in MIS-C, TSS and KD, contrasting with low expression of HLA-DR in monocytes. We detected a specific expansion of activated T cells expressing the Vβ21.3 T cell receptor β chain variable region in both CD4 and CD8 subsets in 75% of MIS-C patients and not in any patient with TSS, KD, or acute COVID-19; this correlated with the cytokine storm detected. The T cell repertoire returned to baseline within weeks after MIS-C resolution. Vβ21.3+ T cells from MIS-C patients expressed high levels of HLA-DR, CD38 and CX3CR1 but had weak responses to SARS-CoV-2 peptides in vitro. Consistently, the T cell expansion was not associated with specific classical HLA alleles. Thus, our data suggested that MIS-C is characterized by a polyclonal Vβ21.3 T cell expansion not directed against SARS-CoV-2 antigenic peptides, which is not seen in KD, TSS and acute COVID-19.


Blood ◽  
2008 ◽  
Vol 111 (5) ◽  
pp. 2497-2498
Author(s):  
Susumu Nakae ◽  
Keisuke Oboki ◽  
Hirohisa Saito

IgE/antigen-FcϵRI crosslinking promotes antigen internalization and apoptosis in mouse mast cells. Dendritic cells uptake the apoptotic mast cells carrying internalized antigens, and thus can efficiently present the antigens to memory T cells.


2004 ◽  
Vol 231 (1-2) ◽  
pp. 75-84 ◽  
Author(s):  
Kenneth Flanagan ◽  
Dorota Moroziewicz ◽  
Heesun Kwak ◽  
Heidi Hörig ◽  
Howard L. Kaufman

Sign in / Sign up

Export Citation Format

Share Document