scholarly journals Mechanism of MSCs Differentiation into Hepatocyte-Like Cells: The Role of Cytokines and Chemical Compounds

Author(s):  
Mingying Liu Yingjie Wang
Keyword(s):  
2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Meenakshi Thakur ◽  
Baldev Singh Sohal

Disease control is largely based on the use of fungicides, bactericides, and insecticides—chemical compounds toxic to plant invaders, causative agents, or vectors of plant diseases. However, the hazardous effect of these chemicals or their degradation products on the environment and human health strongly necessitates the search for new, harmless means of disease control. There must be some natural phenomenon of induced resistance to protect plants from disease. Elicitors are compounds, which activate chemical defense in plants. Various biosynthetic pathways are activated in treated plants depending on the compound used. Commonly tested chemical elicitors are salicylic acid, methyl salicylate, benzothiadiazole, benzoic acid, chitosan, and so forth which affect production of phenolic compounds and activation of various defense-related enzymes in plants. Their introduction into agricultural practice could minimize the scope of chemical control, thus contributing to the development of sustainable agriculture. This paper chiefly highlights the uses of elicitors aiming to draw sufficient attention of researchers to the frontier research needed in this context.


Author(s):  
Waill Elkhateeb ◽  
Ghoson Daba

Abstract. Elkhateeb WA, Daba GM. 2020. Review: The endless nutritional and pharmaceutical benefits of the Himalayan gold, Cordyceps; Current knowledge and prospective potentials. Biofarmasi J Nat Prod Biochem 18: 70-77. As a traditional medicine, Cordyceps has long been used in Asian nations for maintaining vivacity and boosting immunity. Numerous publications on various bioactivities of Cordyceps have been investigated in both in-vitro as well as in vivo studies. Nevertheless, the role of Cordyceps is still arguable whether it acts as food supplement for health benefits or a real healing drug that can be prescribed in medicine. The Cordyceps industry has developed greatly and offers thousands of products, commonly available in a global marketplace. In this review, focus will be on introducing the ecology of Cordyceps and their classification. Moreover, elucidation of the richness of extracts originated from this mushroom in nutritional components was presented, with description of the chemical compounds of Cordyceps and its well-known compounds such as cordycepin, and cordycepic acid. Furthermore, highlights on natural growth and artificial cultivation of famous Cordyceps species were presented. The health benefits and reported bioactivities of Cordyceps species as promising antimicrobial, anticancer, hypocholesterolemic, antioxidant, antiviral, anti-inflammatory, organ protective agent, and enhancer for organ function were presented.


Author(s):  
Kevser Taban Akça ◽  
Murside Ayşe Demirel ◽  
Ipek Süntar

: Medicinal plants have a long history of use as food and remedy in traditional and modern societies, as well as have been used as herbal drugs and sources of novel bioactive compounds. They provide a wide array of chemical compounds, many of which can not be synthesized via current synthesis methods. Natural products may provide aromatase inhibitory activity through various pathways and may act clinically effective for treating pathologies associated with excessive aromatase secretion including breast, ovarian and endometrial cancers, endometriosis, uterine fibroid, benign prostatic hyperplasia (BPH), prostate cancer, infertility, and gynecomastia. Recent studies have shown that natural products with aromatase inhibitory activity, could also be good options against secondary recurrence of breast cancer by exhibiting chemopreventive effects. Therefore, screening for new plant-based aromatase inhibitors may provide novel leads for drug discovery and development, particularly with increased clinical efficacy and decreased side effects.


Life ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 322
Author(s):  
Fabian Brandenburg ◽  
Stephan Klähn

Over the past few decades, bioengineered cyanobacteria have become a major focus of research for the production of energy carriers and high value chemical compounds. Besides improvements in cultivation routines and reactor technology, the integral understanding of the regulation of metabolic fluxes is the key to designing production strains that are able to compete with established industrial processes. In cyanobacteria, many enzymes and metabolic pathways are regulated differently compared to other bacteria. For instance, while glutamine synthetase in proteobacteria is mainly regulated by covalent enzyme modifications, the same enzyme in cyanobacteria is controlled by the interaction with unique small proteins. Other prominent examples, such as the small protein CP12 which controls the Calvin–Benson cycle, indicate that the regulation of enzymes and/or pathways via the attachment of small proteins might be a widespread mechanism in cyanobacteria. Accordingly, this review highlights the diverse role of small proteins in the control of cyanobacterial metabolism, focusing on well-studied examples as well as those most recently described. Moreover, it will discuss their potential to implement metabolic engineering strategies in order to make cyanobacteria more definable for biotechnological applications.


2009 ◽  
Vol 64 (5-6) ◽  
pp. 434-440 ◽  
Author(s):  
Renata Kopena ◽  
Pilar López ◽  
José Martín

In spite of the importance of chemical signals (pheromones) in the reproductive behaviour of lizards, only a few studies have examined the role of specific chemical compounds as sexual signals. The secreted chemicals vary widely between species but whether this variation reflects phylogenetic or environmental differences remains unclear. Based on mass spectra, obtained by GC-MS, we found 40 lipophilic compounds in femoral gland secretions of male green lizards (Lacerta viridis), including several steroids, α-tocopherol, and esters of n-C16 to n-C20 carboxylic acids, and minor components such as alcohols between C12 and C20, squalene, three lactones and one ketone. We compared these chemicals with those previously found in other closely related green lizard species, and discussed how phylogenetical differences and/or environmental conditions could be responsible for the differential presence of chemicals in different lizard species.


Acta Naturae ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 76-90
Author(s):  
Margarita A. Yastrebova ◽  
Alvina I. Khamidullina ◽  
Victor V. Tatarskiy ◽  
Alexander M. Scherbakov

The review analyzes Snail family proteins, which are transcription factors involved in the regulation of the epithelial-mesenchymal transition (EMT) of tumor cells. We describe the structure of these proteins, their post-translational modification, and the mechanisms of Snail-dependent regulation of genes. The role of Snail proteins in carcinogenesis, invasion, and metastasis is analyzed. Furthermore, we focus on EMT signaling mechanisms involving Snail proteins. Next, we dissect Snail signaling in hypoxia, a condition that complicates anticancer treatment. Finally, we offer classes of chemical compounds capable of down-regulating the transcriptional activity of Snails. Given the important role of Snail proteins in cancer biology and the potential for pharmacological inhibition, Snail family proteins may be considered promising as therapeutic targets.


2021 ◽  
Vol 12 (4) ◽  
pp. 72
Author(s):  
Gregorio Bonsignore ◽  
Mauro Patrone ◽  
Simona Martinotti ◽  
Elia Ranzato

The development of nanotechnology has allowed us to better exploit the potential of many natural compounds. However, the classic nanotechnology approach often uses both dangerous and environmentally harmful chemical compounds and drastic conditions for synthesis. Nevertheless, “green chemistry” techniques are revolutionizing the possibility of making technology, also for tissue engineering, environmentally friendly and cost-effective. Among the many approaches proposed and among several natural compounds proposed, honey seems to be a very promising way to realize this new “green” approach.


Author(s):  
Ekaterina Iakovlevna Beletskaia ◽  
Svetlana Petrovna Chibis ◽  
Liudmila Anatolevna Krotova ◽  
Vladimir Aleksandrovich Shelontsev

The paper deals with the use of chemical compounds in soft wheat breeding, the role of induced mutations in plant improvement. The paper presents the effects of fungicides influence on morpho-logical and population traits of soft wheat. Laboratory experiments revealed the effects of disinfect-ants, the concentrations of their active components and the period from treatment to the formation sprouts of soft spring wheat Pavlogradka. The effect of systemic fungicides Comfort, AltSil, Ter-rasil and Alcasar was studied whet applied at recommended dose and greater than twice the normal values. They were compared with control samples without treatment. The sowing qualities of treated seeds were unstable, morphological and population traits of wheat seedlings were not homogeneous.


2020 ◽  
pp. 37-42
Author(s):  
M.V. Khaitovich ◽  

Folates (folic acid-based chemical compounds) got their name from the Latin “folio” - “leaf”, since they were first synthesized from spinach leaves, in which vitamin B9 is found in maximum quantities. As an important cofactor in carbon metabolism, folates are involved in the most important metabolic processes in the body, in particular, they play a key role in the synthesis of nucleotides and DNA replication. The article provides information on the physiological role of folates, their metabolism and its genetic aspects. The clinical significance of folate deficiency is examined, their sources and doses are described, and the interaction of folic acid and drugs is highlighted. Keywords: folate, metabolism, folic acid deficiency, pregnancy.


Sign in / Sign up

Export Citation Format

Share Document