Temperature Dependent Sub threshold Drain Current Model for Junction less Gate all Around MOSFET with High-K Gate Stack

Author(s):  
Suman Sharma ◽  
Rajni Shukla
2019 ◽  
Vol 57 ◽  
pp. 68-76 ◽  
Author(s):  
V. Dharshan ◽  
N.B. Balamurugan ◽  
T.S. Arun Samuel

In this paper, an analytical model for modified Surrounding Gate Tunnel FET with gate stack engineering and different gate metals has been developed. Further, considering the scaling advantageous of Gate stack engineering and high degree performance of dual material engineering, the both has been integrated into a novel structure known as Surrounding Gate (SG) Tunnel FET with stacked oxide SiO2/high-k and dual material (DM) has been proposed. The two dimensional (2D) potential at the surface and electric field mathematical models for the DMSG TFET are developed by solving 2D Poisson's equation with matching device boundary conditions. Based on the Kane's formula, mathematical expression for the band-to-band (BTB) tunneling generation rate is derived and then used to calculate the drain current. The impact on the proposed device performance due to the variation of different device parameters has also been studied. It has been found from the presented results that the ON current of the DMSG TFET with stack is 10-6A, OFF current is 10-13A and ON/OFF ratio is 107. The mathematical results have been verified using the simulated results obtained from TCAD, a 3-D device simulator from ATLAS.


2019 ◽  
Vol 9 (2) ◽  
pp. 291-297
Author(s):  
Hind Jaafar ◽  
Abdellah Aouaj ◽  
Ahmed Bouziane ◽  
Benjamin Iñiguez

Background: A novel Dual Material Gate Graded Channel and Dual Oxide Thickness Cylindrical Gate (DMG-GC-DOT) MOSFET is presented in this paper. Methods: Analytical model of drain current is developed using a quasi-two-dimensional cylindrical form of the Poisson equation and is expressed as a function of the surface potential, which is calculated using the expressions of the current density. Results: Comparison of the analytical results with 3D numerical simulations using Silvaco Atlas - TCAD software presents a good agreement from subthreshold to strong inversion regime and for different bias voltages. Conclusion: Two oxide thicknesses with different permittivity can effectively improve the subthreshold current of DMG-GC-DOT MOSFET.


Electronics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 735
Author(s):  
Fortunato Pezzimenti ◽  
Hichem Bencherif ◽  
Giuseppe De Martino ◽  
Lakhdar Dehimi ◽  
Riccardo Carotenuto ◽  
...  

A numerical simulation study accounting for trap and defect effects on the current-voltage characteristics of a 4H-SiC-based power metal-oxide-semiconductor field effect transistor (MOSFET) is performed in a wide range of temperatures and bias conditions. In particular, the most penalizing native defects in the starting substrate (i.e., EH6/7 and Z1/2) as well as the fixed oxide trap concentration and the density of states (DoS) at the 4H-SiC/SiO2 interface are carefully taken into account. The temperature-dependent physics of the interface traps are considered in detail. Scattering phenomena related to the joint contribution of defects and traps shift the MOSFET threshold voltage, reduce the channel mobility, and penalize the device current capabilities. However, while the MOSFET on-state resistance (RON) tends to increase with scattering centers, the sensitivity of the drain current to the temperature decreases especially when the device is operating at a high gate voltage (VGS). Assuming the temperature ranges from 300 K to 573 K, RON is about 2.5 MΩ·µm2 for VGS > 16 V with a percentage variation ΔRON lower than 20%. The device is rated to perform a blocking voltage of 650 V.


Sign in / Sign up

Export Citation Format

Share Document