scholarly journals Evaluation of Weed Control Options for Herbicide Resistant Transgenic Stacked (TC 1507 X NK603) and Conventional Maize Hybrids for Higher Productivity

2013 ◽  
Vol 04 (09) ◽  
pp. 1713-1720
Author(s):  
Sivagamy Kannan ◽  
Chinnusamy Chinnagounder
Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1879
Author(s):  
Martina Badano Perez ◽  
Hugh J. Beckie ◽  
Gregory R. Cawthray ◽  
Danica E. Goggin ◽  
Roberto Busi

Overreliance on herbicides for weed control is conducive to the evolution of herbicide resistance. Lolium rigidum (annual ryegrass) is a species that is prone to evolve resistance to a wide range of herbicide modes of action. Rapid detection of herbicide-resistant weed populations in the field can aid farmers to optimize the use of effective herbicides for their control. The feasibility and utility of a rapid 7-d agar-based assay to reliably detect L. rigidum resistant to key pre- and post-emergence herbicides including clethodim, glyphosate, pyroxasulfone and trifluralin were investigated in three phases: correlation with traditional pot-based dose-response assays, effect of seed dormancy, and stability of herbicides in agar. Easy-to-interpret results were obtained using non-dormant seeds from susceptible and resistant populations, and resistance was detected similarly as pot-based assays. However, the test is not suitable for trifluralin because of instability in agar as measured over a 10-d period, as well as freshly-harvested seeds due to primary dormancy. This study demonstrates the utility of a portable and rapid assay that allows for on-farm testing of clethodim, glyphosate, and pyroxasulfone resistance in L. rigidum, thereby aiding the identification and implementation of effective herbicide control options.


2021 ◽  
pp. 1-28
Author(s):  
Nicholas T. Basinger ◽  
Nicholas S. Hill

Abstract With the increasing focus on herbicide-resistant weeds and the lack of introduction of new modes of action, many producers have turned to annual cover crops as a tool for reducing weed populations. Recent studies have suggested that perennial cover crops such as white clover could be used as living mulch. However, white clover is slow to establish and is susceptible to competition from winter weeds. Therefore, the objective of this study was to determine clover tolerance and weed control in established stands of white clover to several herbicides. Studies were conducted in the fall and winter of 2018 to 2019 and 2019 to 2020 at the J. Phil Campbell Research and Education Center in Watkinsville, GA, and the Southeast Georgia Research and Education Center in Midville, GA. POST applications of imazethapyr, bentazon, or flumetsulam at low and high rates, or in combination with 2,4-D and 2,4-DB, were applied when clover reached 2 to 3 trifoliate stage. Six weeks after the initial POST application, a sequential application of bentazon and flumetsulam individually, and combinations of 2,4-D, 2,4-DB, and flumetsulam were applied over designated plots. Clover biomass was similar across all treatments except where it was reduced by sequential applications of 2,4-D + 2,4-DB + flumetsulam in the 2019 to 2020 season indicating that most treatments were safe for use on establishing living mulch clover. A single application of flumetsulam at the low rate or a single application of 2,4-D + 2,4-DB provided the greatest control of all weed species while minimizing clover injury when compared to the non-treated check. These herbicide options allow for control of problematic winter weeds during clover establishment, maximizing clover biomass and limiting canopy gaps that would allow for summer weed emergence.


2005 ◽  
Vol 75 (4) ◽  
pp. 79-84 ◽  
Author(s):  
D. Shaner

Some of the first products of biotechnology to reach the marketplace have been herbicide-resistant crops. Industry sees the development of herbicide-resistant varieties as a way to increase the availability of proven herbicides for a broader range of crops. However, the development of herbicide- resistant crops requires special attention to potential environmental questions such as herbicide usage, selection of resistant weed biotypes and spread of resistance from the resistant crop to wild species. Industry is actively addressing these concerns during the process of development. Proper development and use of herbicide-resistant crops in integrated weed management programs will provide farmers with increased flexibility, efficiency, and decreased cost in their weed control practices without increasing the risk of herbicide-resistant weeds. Furthermore, herbicide-resistant crops should prove to be valuable tools in managing herbicide- resistant weeds.


1992 ◽  
Vol 6 (3) ◽  
pp. 615-620 ◽  
Author(s):  
Jodie S. Holt

At least 57 weed species, including both dicots and monocots, have been reported to have biotypes selected for resistance to the triazine herbicides. In addition, at least 47 species have been reported to have biotypes resistant to one or more of 14 other herbicides or herbicide families. These herbicides include the aryloxyphenoxypropionics, bipyridiliums, dinitroanilines, phenoxys, substituted areas, and sulfonylureas, with two or more resistant biotypes each, as well as several other herbicides in which resistance is less well documented. Although evolved resistance presents a serious problem for chemical weed control, it has also offered new potential for transferring herbicide resistance to crop species. Mechanisms of resistance that are due to single or a few genes have become the focus of biotechnology, as the probability of their successful transfer to crop species is high.


2004 ◽  
Vol 18 (4) ◽  
pp. 1006-1012 ◽  
Author(s):  
K. Neil Harker ◽  
George W. Clayton ◽  
John T. O'Donovan ◽  
Robert E. Blackshaw ◽  
F. Craig Stevenson

Herbicide-resistant canola dominates the canola market in Canada. A multiyear field experiment was conducted at three locations to investigate the effect of time of weed removal (two-, four-, or six-leaf canola) and herbicide rate (50 or 100% recommended) in three herbicide-resistant canola systems. Weeds were controlled in glufosinate-resistant canola (GLU) with glufosinate, in glyphosate-resistant canola (GLY) with glyphosate, and in imidazolinone-resistant canola (IMI) with a 50:50 mixture of imazamox and imazethapyr. Canola yields were similar among the three canola cultivar–herbicide systems. Yields were not influenced by 50 vs. 100% herbicide rates. Timing of weed removal had the greatest effect on canola yield, with weed removal at the four-leaf stage giving the highest yields in most cases. Percent dockage was often greater for GLU and IMI than for GLY. In comparison with the other treatments, dockage levels doubled for GLU after application at 50% herbicide rates. The consistency of monocot weed control was usually greater for GLY than for GLU or IMI systems. However, weed biomass data revealed no differences in dicot weed control consistency between IMI and GLY systems. Greater dockage and weed biomass variability after weed removal at the six-leaf stage or after low herbicide rates suggests higher weed seed production, which could constrain the adoption of integrated weed management practices in subsequent years.


1994 ◽  
Vol 8 (1) ◽  
pp. 124-128 ◽  
Author(s):  
Garry Tyron Ford ◽  
Jane Mt. Pleasant

Six corn hybrids were studied in field experiments in 1989 and 1990 to identify hybrids and corn plant characteristics that may be valuable in systems using reduced levels of weed control. Four weed control treatments (no-control, cultivation-only, band herbicide-plus-cultivation, and broadcast herbicide) represented main plots and maize hybrids were subplots. Medium-season hybrids with differences in height, early-season vigor, and leafiness were used. There were significant differences among hybrids in leaf angle, leaf width, leaf number, plant height, leaf area index (LAI), plant dry matter (DM) and grain and stover yields. Lower yielding hybrids had grain yields that ranged from 87 to 91% of the highest yielding hybrid. Aboveground corn characteristics were not correlated with weed numbers, weed cover, or weed biomass. A significant interaction between hybrid and weed control for grain yields was observed in 1989, suggesting that some hybrids are more competitive when weed pressure is high.


2020 ◽  
pp. 1-7
Author(s):  
Denis J. Mahoney ◽  
David L. Jordan ◽  
Andrew T. Hare ◽  
Nilda Roma-Burgos ◽  
Katherine M. Jennings ◽  
...  

Abstract Overreliance on herbicides for weed control has led to the evolution of herbicide-resistant Palmer amaranth populations. Farm managers should consider the long-term consequences of their short-term management decisions, especially when considering the soil weed seedbank. The objectives of this research were to (1) determine how soybean population and POST herbicide application timing affects in-season Palmer amaranth control and soybean yield, and (2) how those variables influence Palmer amaranth densities and cotton yields the following season. Soybeans were planted (19-cm row spacing) at a low-, medium-, and high-density population (268,000, 546,000, and 778,000 plants ha–1, respectively). Fomesafen and clethodim (280 and 210 g ai ha–1, respectively) were applied at the VE, V1, or V2 to V3 soybean growth stage. Nontreated plots were also included to assess the effect of soybean population alone. The following season, cotton was planted into these plots so as to understand the effects of soybean planting population on Palmer amaranth densities in the subsequent crop. When an herbicide application occurred at the V1 or V2 to V3 soybean stage, weed control in the high-density soybean population increased 17% to 23% compared to the low-density population. Economic return was not influenced by soybean population and was increased 72% to 94% with herbicide application compared to no treatment. In the subsequent cotton crop, Palmer amaranth densities were 24% to 39% lower 3 wk after planting when following soybean sprayed with herbicides compared to soybean without herbicides. Additionally, Palmer amaranth densities in cotton were 19% lower when soybean was treated at the VE stage compared to later stages. Thus, increasing soybean population can improve Palmer amaranth control without adversely affecting economic returns and can reduce future weed densities. Reducing the weed seedbank and selection pressure from herbicides are critical in mitigating resistance evolution.


Weed Science ◽  
2019 ◽  
Vol 67 (1) ◽  
pp. 57-67 ◽  
Author(s):  
O. Adewale Osipitan ◽  
J. Anita Dille ◽  
Muthukumar V. Bagavathiannan ◽  
Stevan Z. Knezevic

AbstractKochia [Bassia scoparia(L.) A. J. Scott] is a problematic weed species across the Great Plains, as it is spreading fast and has developed herbicide-resistant biotypes. It is imperative to understand key life-history stages that promote population expansion ofB. scopariaand control strategies that would provide effective control of these key stages, thereby reducing population growth. Diversifying weed control strategies has been widely recommended for the management of herbicide-resistant weeds. Therefore, the objectives of this study were to develop a simulation model to assess the population dynamics ofB. scopariaand to evaluate the effectiveness of diverse weed control strategies on long-term growth rates ofB. scopariapopulations. The model assumed the existence of a glyphosate-resistant (GR) biotype in theB. scopariapopulation, but at a very low proportion in a crop rotation that included glyphosate-tolerant corn (Zea maysL.) and soybean [Glycine max(L.) Merr.]. The parameter estimates used in the model were obtained from various ecological and management studies onB. scoparia. Model simulations indicated that seedling recruitment and survival to seed production were more important than seedbank persistence forB. scopariapopulation growth rate. Results showed that a diversified management program, including glyphosate, could provide excellent control ofB. scopariapopulations and potentially eliminate already evolved GRB. scopariabiotypes within a given location. The most successful scenario was a diverse control strategy that included one or two preplant tillage operations followed by preplant or PRE application of herbicides with residual activities and POST application of glyphosate; this strategy reduced seedling recruitment, survival, and seed production during the growing season, with tremendous negative impacts on long-term population growth and resistance risk inB. scoparia.


2006 ◽  
Vol 20 (3) ◽  
pp. 551-557 ◽  
Author(s):  
Timothy L. Grey ◽  
Paul L. Raymer ◽  
David C. Bridges

Field studies were conducted to evaluate weed control in herbicide-resistant canola in Georgia. The resistant canola cultivars and respective herbicides were ‘Pioneer 45A76’ and imazamox, ‘Hyola 357RR’ and glyphosate, and ‘2573 Invigor’ and glufosinate. Weed seed of Italian ryegrass and wild radish were sown simultaneously in October with canola and control of these species was evaluated along with other naturally occurring weeds. Herbicide treatments for the respective herbicide-resistant canola cultivar were imazamox at 0.035 and 0.071 kg ai/ha, glyphosate at 0.84 and 1.64 kg ae/ha, and glufosinate at 0.5 and 1.0 kg ai/ha. Herbicides were applied at one– two-leaf (LF) and three–four-LF canola stages. There was no significant injury to any canola cultivar as a result of herbicide rate or timing of application. By midseason (February), imazamox effectively controlled wild radish, henbit, and shepherd's-purse at both rates and at both timings. When applied to three–four-LF canola, the higher rates of glyphosate and glufosinate were required to provide 75% or greater control of Italian ryegrass, wild garlic, and henbit. Glufosinate did not adequately control wild radish at either rate or application timing. Greenhouse experiments provided similar results.


2006 ◽  
Vol 20 (1) ◽  
pp. 172-178 ◽  
Author(s):  
Karen A. Zuver ◽  
Mark L. Bernards ◽  
James J. Kells ◽  
Christy L. Sprague ◽  
Case R. Medlin ◽  
...  

Herbicide-resistant corn hybrids offer additional options for POST weed control in corn, and growers may benefit from information on the consistency of these weed-control strategies. Studies were conducted in Indiana, Illinois, Michigan, and Ohio, in 2000 and 2001, to evaluate weed control among herbicide strategies for imidazolinone-resistant, glufosinate-resistant, glyphosate-resistant, and conventional corn. Isogenic hybrids were utilized to minimize variation in growth and yield potential among hybrids. The glyphosate-resistant corn postemergence (glyphosate-POST) treatment provided more consistent control of giant foxtail than the PRE, conventional corn postemergence (conventional-POST), glufosinate-resistant corn postemergence (glufosinate-POST), and imidazolinone-resistant corn postemergence (imi-POST) treatments. All four POST treatments were more consistent and provided greater control than the PRE treatment of the large-seeded broadleaf weeds velvetleaf, giant ragweed, common cocklebur, and morningglory species. Conventional-POST and imi-POST were more consistent than glufosinate-POST and glyphosate-POST treatments in controlling giant ragweed. There were no statistical differences in the variability of PRE or POST treatments for control of common lambsquarters, common ragweed, and redroot pigweed. Corn yield varied among locations and years. The glyphosate-POST treatment did not reduce yield relative to the weed-free treatment, the imi-POST and glufosinate-POST treatments each reduced yield in one of eight locations, and the conventional-POST treatment reduced yield in three of eight locations.


Sign in / Sign up

Export Citation Format

Share Document